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Abstract
This paper gauges efficiency in container ports. Using non-parametric methods, we

estimate efficiency frontiers based on information from 86 ports across the world. Three
attractive features of the method are: 1) it is based on an aggregated measure of efficiency
despite the existence of multiple inputs; 2) it does not assume particular input-output
functional relationships; and 3) it does not rely on a-priori peer selection to construct the
benchmark. Results show that the most inefficient ports use inputs in excess of 20 to 40
percent. Since infrastructure costs represent about 40 percent of total maritime transport
costs, these could be reduced by 12 percent by moving from the inefficient extreme of the
distribution to the efficient one.
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Resumo
Este trabalho mede a eficiência nos portos que usam containers. Utilizando métodos não

paramétricos, estimamos as fronteiras de eficiência baseado em informação de 86 portos
distribúıdos pelo mundo. Três aspectos positivos do método são: 1) baseado em uma
medida agregada de eficiência apesar da existência de múltiplos insumos; 2) não assume
relações funcionais particulares de insumo-produto; e 3) não se baseia em seleção a priori
dos pares para construir o marco de referência. Os resultados mostram que os portos mais
ineficientes usam insumos em excesso de 20 a 40 por cento. Tendo em vista que os custos
de infraestrutura representam 40 por cento do total dos custos de transporte maŕıtimo,
estes poderiam ser reduzidos em cerca de 12 por cento movendo-se do extremo ineficiente
da distribuição para o extremo eficiente.
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1. Motivation and Introduction

Transport costs are a barrier to trade. To a large extent, they are determined
by the efficiency of port infrastructure. Poor port efficiency will increase import
prices and reduce the competitiveness of the country’s exports in world markets.
Hence, port efficiency is a critical link between the domestic economy and the rest
of the world. Lowering transport costs will, presumably, increase trade volume and,
consequently, enhance the productivity of domestic factors of production, leading
to higher growth rates.

A fundamental task for policymakers and other stakeholders is to gauge and
monitor efficiency of the port services. This is a difficult task in a fluid environment.
Technological change has made the shipping business very different from what it
used to be. Containerization transformed the cargo management operation from a
break-bulk process into a bulk and unitized one. From a labor intensive activity,
it switched into a capital intensive one. In this changing environment, monitoring
efficiency based on historical performance might be misleading, and comparing port
performance with peers from around the world may be more informative. This is
reflected in the recent interest of policymakers and the academic community in
international benchmarking of container ports.

The object of this paper is to gauge efficiency of container terminals across
the world. Based on non-parametric methods, the paper estimates the maximum
attainable output for a given input level and gauges efficiency as the distance from
the observed input-output combinations to this frontier. Three attractive features
of this approach are:

1) it is based on an aggregated measure of efficiency despite the existence of
multiple inputs;

2) it does not assume any particular functional relationship between inputs and
outputs; and

3) it does not rely on a-priori peer selection to construct the benchmark.
Compared with previous work that has used similar methods, this paper
specifically examines the performance of ports in developing countries and
makes the comparison among a larger group of countries.

The paper has three chapters following this Introduction. The first one presents
the methodology of the non-parametric methods, namely the Free Disposable Hull
(FDH) and Data Envelopment Analysis (DEA) techniques. The second chapter
describes the data and estimates the efficiency frontiers. Both input-efficiency
(excess input consumption to achieve a given level of output) and output-efficiency
(output shortfall for a given level of inputs) are scored. The chapter presents both
the single input-single-output and the multiple-inputs frameworks. The third and
last chapter summarizes the findings and concludes.
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2. Methodology and Overview of Precursor Papers

The object of this chapter is to briefly describe the methodology applied in
this paper and to survey previous studies of port efficiency. Both theoretical and
empirical measures of efficiency are based on ratios of observed output levels to the
maximum that could have been obtained, given the inputs utilized. This maximum
constitutes the efficient frontier which will be the benchmark for measuring the
relative efficiency of the observations. There are multiple techniques to estimate
this frontier, surveyed recently by Murillo-Zamorano (2004), and the methods have
been recently applied to examine port efficiency. These two topics are explored in
the next two sections.

2.1. Methods for measuring efficiency

The origin of the modern discussion of efficiency measurement dates back to
Farrell (1957), who identified two different ways in which productive agents could
be inefficient: one, they could use more inputs than technically required to obtain a
given level of output, or two, they could use a sub-optimal input combination given
the input prices and their marginal productivities. The first type of inefficiency is
termed technical inefficiency while the second one is known as allocative inefficiency.

These two types of inefficiency can be represented graphically by means of the
unit isoquant curve in Figure 1. The set of minimum inputs required for a unit
of output lies on the isoquant curve Y Y ′. An agent’s input-output combination
defined by bundle P produces one unit of output using input quantities X1 and
X2. Since the same output can be achieved by consuming less of both inputs along
the radial back to bundle R, the segment RP represents the inefficiency in resource
utilization. The technical efficiency (TE), input-oriented, is therefore defined as
TE = OR/OP . Furthermore, the producer could achieve additional cost reduction
by choosing a different input combination. The least cost combination of inputs
that produces one unit of output is given by point T , where the marginal rate of
technical substitution is equal to the input price ratio. To achieve this cost level
implicit in the optimal combination of inputs, input use needs to be contracted to
bundle S. The input allocative efficiency (AE) is defined as AE = OS/OR.
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Fig. 1. Technical and allocative inefficiency
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The focus of this paper is measuring technical efficiency, given the lack of
comparable input prices across the countries. This concept of efficiency is narrower
than the one implicit in social welfare analysis. That is, countries may be producing
the wrong output very efficiently (at low cost). We abstract from this consideration
(discussed by Tanzi (2004), focusing on the narrow concept of efficiency.

Numerous techniques have been developed over the past decades to tackle the
empirical problem of estimating the unknown and unobservable efficient frontier
(in this case the isoquant Y Y ′′). These may be classified using several taxonomies.
The two most widely used catalog methods into parametric or non-parametric,
and into stochastic or deterministic. The parametric approach assumes a specific
functional form for the relationship between the inputs and the outputs as well as
for the inefficiency term incorporated in the deviation of the observed values from
the frontier. The non-parametric approach calculates the frontier directly from the
data without imposing specific functional restrictions. The first approach is based
on econometric methods, while the second one uses mathematical programming
techniques. The deterministic approach considers all deviations from the frontier
explained by inefficiency, while the stochastic focus considers those deviations a
combination of inefficiency and random shocks outside the control of the decision
maker.

This paper uses non-parametric methods to avoid assuming specific functional
forms for the relationship between inputs and outputs or for the inefficiency terms.
The remainder of the section briefly describes the two methods: the Free Disposable
Hull (FDH) and the Data Envelopment Analysis (DEA). The FDH method imposes
the least amount of restrictions on the data, as it only assumes free-disposability of
resources. Figure 2 illustrates the single-input single-output case of FDH production
possibility frontier.

Fig. 2. Free Disposal Hull (FDH) production possibility frontier

Countries A and B use input XA and XB to produce outputs YA and YB ,
respectively. The input efficiency score for country B is defined as the quotient
XA/XB . The output efficiency score is given by the quotient YB/YA. A score of one
implies that the country is on the frontier. An input efficiency score of 0.75 indicates
that this particular country uses inputs in excess of the most efficient producer to
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achieve the same output level. An output efficiency score of 0.75 indicates that the
inefficient producer attains 75 percent of the output obtained by the most efficient
producer with the same input intake. Multiple input and output efficiency tests
can be defined in an analogous way.

The second approach, Data Envelopment Analysis (DEA), assumes that linear
combinations of the observed input-output bundles are feasible. Hence it assumes
convexity of the production set to construct an envelope around the observed
combinations. Figure 3 illustrates the single input-single output DEA production
possibility frontier. In contrast to the vertical step-ups of FDH frontier, DEA
frontier is a piecewise linear locus connecting all the efficient decision-making units
(DMU). The feasibility assumption, displayed by the piecewise linearity, implies
that the efficiency of C, for instance, is not only ranked against the real performers
A and D, called the peers of C in the literature, but also evaluated with a virtual
decision maker, V , which employs a weighted collection of A and D inputs to yield
a virtual output. DMU C, which would have been considered to be efficient by
FDH, is now lying below the variable returns to scale (VRS, further defined below)
efficiency frontier, XADF , by DEA ranking. This example shows that FDH tends
to assign efficiency to more DMUs than DEA does. The input-oriented technical
efficiency of C is now defined by TE = Y V/Y C.

Fig. 3. DEA production possibility frontier

If constant returns to scale (CRS) characterize the production set, the frontier
may be represented by a ray extending from the origin through the efficient DMU
(ray OA). By this standard, only A would be rated efficient. The important feature
of the XADF frontier is that this frontier reflects variable returns to scale. The
segment XA reflects locally increasing returns to scale (IRS), that is, an increase in
the inputs results in a greater than proportionate increase in output. Segments AD

170 EconomiA, Braśılia(DF), v.9, n.1, p.165–194, Jan-Apr 2008



Efficiency of Infrastructure: The Case of Container Ports

andDF reflect decreasing returns to scale. It is worth noticing that constant returns
to scale technical efficiency (CRSTE) is equal to the product of variable returns
to scale technical efficiency (VRSTE) and scale efficiency (SE). Accordingly, DMU
D is technically efficient but scale inefficient, while DMU C is neither technically
efficient nor scale efficient. The scale efficiency of C is calculated as Y N/Y V . For
more detailed exploration of returns to scale, readers are referred to Charnes et al.
(1978) and Banker et al. (1984), among others. 1

The shipping business and port services are characterized by scale economies, as
the cost of mobilizing a 40-foot container is more or less the same as mobilizing
a 20-foot one. For those ports that are inefficient, the adjustment path towards
the efficiency frontier will depend on their location with respect to the increasing
returns to scale (IRS) or decreasing returns to scale (DRS) portions of the efficiency
frontier. Figure 4 represents the different possibilities. 2 Both ports E and F are
classified as inefficient. However, their production levels differ because E lies in
the IRS portion while F is characterized by DRS. Hence, to achieve benchmark
efficiency level, port E should increase output level until point E′, while port F
should decrease input consumption until reaching F ′.

Fig. 4. Efficiency and Returns to Scale

Finally, the selection of peers for the construction of the benchmark depends
on whether the efficiency measurement is output-oriented or input-oriented, and
on the specific situation of the port with respect to other agents and the frontier.
Figure 5 illustrates the different possibilities. For instance, both ports M and N
are inefficient. For port M,A and D serve as the benchmark peers when measuring
input efficiency, and D and F are peers when measuring output efficiency. For

1
The technical Appendix A provides more detailed exploration of the Data Envelopment Analysis,

which shows how the peers are identified, how the virtual DMUs are constructed, and how weights to
the different efficient DMUs and efficiency scores are calculated.
2

Following Golany and Thore (1997) graphical exposition.
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port N , the measurement of both input and output inefficiencies is based on the
combinations of ports D and F .

Fig. 5. Selection of peers

The limitations of the non-parametric method derive mostly from the sensitivity
of the results to sampling variability, to the quality of the data and to the presence of
outliers. This has led recent literature to explore the relationship between statistical
analysis and non-parametric methods (Simar and Wilson 2000). Some solutions
have been advanced. For instance, confidence intervals for the efficiency scores can
be estimated using asymptotic theory in the single input case (for input-efficiency
estimators) or single-output (in the output efficiency) case, given these are shown
to be maximum likelihood estimators (Banker (1993) and Grosskopf (1996)).
For multiple input-output cases the distribution of the efficiency estimators is
unknown or quite complicated and analysts recommend constructing the empirical
distribution of the scores by means of bootstrapping methods (Simar and Wilson
2000). Other solutions to the outlier or noisy data consist in constructing a
frontier that does not envelop all the data point, building an expected minimum
input function or expected maximum output functions (Cazals et al. (2002), and
Wheelock and Wilson (2003)).

2.2. Overview of precursor papers

This section will not attempt an exhaustive survey of the applied literature on the
measurement of port efficiency, as this is covered in three recent papers: Gonzalez
and Trujillo (2005), Tovar et al. (2003) and Wang et al. (2002). Instead, it will do
taxonomy useful to guide the reader through the present paper.

The various papers can be classified either by the method or by the sample
they use. The papers use either the stochastic frontier methods or non-parametric
methods. The first two surveys refer mostly to other papers using this method, while
the Wang et al. (2002) paper surveys exclusively papers using the DEA method.
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Additionally, the papers can be classified according to the samples. Papers are
based on samples coming from a single country, or they can include ports of different
countries. Within the single-country sample, the most recent are Park and De
(2004) study of Korean ports, Cullinane and Dong (2003) analysis of Korean ports,
Gonzalez and Trujillo (2005) study of Spanish ports, and Estache et al. (2001)
study of Mexican ports. These papers have relatively few ports and a long time
series. The paper on Mexico has the largest number of ports (13) while the paper
on Spanish ports covers the longest time span (1990-2002). These papers have an
output variable and use some proxies for capital, labor and other intermediate
products as inputs.

Alternatively, the sample can cover ports from around the world. Among this
group of papers we have Cullinane et al. (2004), including the largest 30 container
ports. Valentine (2001) study of 15 African ports, Valentine and Gray (2001) that
study 31 container ports across the world, and Notteboom et al. (2000) that
included 36 European container terminals and 4 Asian terminals. All of these
studies use DEA techniques, except Notteboom et al. (2000). They all use as inputs
the number of cranes, the terminal area, and the container berth length. None of
these papers uses labor input, except Notteboom et al. (2000). They report no
statistical significance for this input and attribute the result to the co-linearity of
this variable with cranes. In turn, most of the papers cover developed nations, with
the exception of Estache et al. (2001) and Valentine (2001) referenced above.

Finally, though using a completely different methodology to estimate port
efficiency, Clark et al. (2002) have an interesting application of their efficiency
measure by relating it to maritime transport costs. Their result of higher efficiency
associated with lower transport costs is statistically significant and of substantial
impact. The main limitation, acknowledged by the authors, derives from the
lack of “comparable information about port efficiency-at port level – to be used
in cross-country analysis”. The authors construct alternative aggregate measure
of port efficiency at the country level, consisting of a one-to-seven index from
the Global Competitiveness Report (GCR). The authors also examine the time
necessary for customs clearance based on surveys performed by the World Bank
and measures on the prevalence of organized crime.

3. Data and Results

3.1. Data description

The service delivered by a container terminal is the transfer of cargo from
a ship to an inland transportation system. In the past decades, the maritime
transportation business changed dramatically due to the containerization process.
From a break-bulk operation consisting in the transport of thousands of loose
packages in small consignments, the operation moved to one of bulk and unitized
trades. While the first type of operation was labor intensive and did not require
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much investment in equipment or technology, the second is just the opposite
(Martin and Thomas 2001).

In the process of mobilizing the cargo, which is the main output indicator, there
are several stages that require different inputs. First, in the quay, the key input
is the sea-to shore-gantry. Given the enormous differences between the volume of
cargo that a ship can carry and that the land vehicles can carry, the terminal
area is critical for storage purposes. The yard cranes are important inputs, as well
as tractors ant trailers to mobilize the cargo within the terminal. Therefore, the
combination of equipment, land and labor will determine the efficiency of each
terminal.

As an output, we used the cargo throughput, which is measured by the number of
twenty-foot equivalent units (TEU), the most common standard size for a container
of 20 feet long. As inputs, we considered the terminal area (A), and three types of
equipment: the number of ship-to-shore gantries (SSG), the number of quay, yard
and mobile gantries (QYM), and the number of tractors and trailers (TT). All
the information comes from several issues of the Containerization International
Yearbooks. The full set of information on throughput and the four inputs is
available for a sample of 51 ports. The sample may be expanded to 82 ports if
only the area is considered as the input, or to 70 ports in the case of ship-to-shore
gantry. The four inputs are positively correlated, indicating their complementary
nature in the production process (Figure 6 and Appendix B).

Fig. 6. Combinations of different inputs across countries
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Cross-country comparisons assume some homogeneity across the world in the
production technology of container terminal services. 3 There are two particular
aspects in which the homogeneity assumption is important. First, the comparison
assumes that there is a small number of factors of production that are the same
across countries. Any omission of an important factor will yield as a result a high
efficiency ranking of the country that uses more of the omitted input. Second, the
comparison requires that the quality of the inputs is more or less the same, with the
efficiency scores biased in favor of countries where the quality is of higher grade.

The present paper omits labor as a factor of production because of the
unavailability of comparable data across countries. It might not be a critical
omission because:

a) technological change that has reduced the importance of this factor;
b) there is a stable relationship between some of the port equipment and the

number of staff, and to the extent that we include this equipment (e.g., TT)
we capture the labor effect; and

c) we check the results reported in the next section for any correlation with
the capital labor ratio of the country and find no evidence of a significant
correlation. 4

Factor heterogeneity will not be a problem as long as it is evenly distributed
across countries. It will be problematic if there are differences between countries
in the average quality of a factor (Farrell 1957). One factor that is not evenly
distributed is geographical location. This is a major limitation, but still there
are major differences in efficiency in ports in the same bay (Buenos Aires and
Montevideo).

A final issue is the consideration of returns to scale of the production function.
We used DEA to allow possibilities of variable returns to scale.

3.2. Results of efficiency estimates

This section presents the single-input results, while a longer version of the paper
reports the multiple input analysis. Similarly, this version of the paper reports
results for a restricted sample of 51 ports, while the longer version of the paper
reports results for enlarged samples of up to 82 ports. A third subsection discusses
the adjustment towards the efficiency frontier based on whether the port exhibits
increasing or decreasing returns to scale.

3.2.1. Single input (restricted Sample – 51 ports)
We first restrict the estimation to the sample of 51 ports with full information

in order to minimize the possibility of sample variability biasing our results. We

3
See Appendix B for the list of container ports included in the study.

4
This supposes that the capital-labor ratio of the country is similar to the specific port.
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use both the FDH and DEA methods to estimate the efficiency frontiers depicted
in Figure 7.
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Fig. 7. Efficiency frontiers – Single input – Restricted sample
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The goodness-of-fit of each model was gauged based on the frequency distribution
of the inefficiency measures, as suggested by Farrell (1957) and Varian (1990).
Comparing the distributions of the efficiency scores (Figure 8) it is clear that the
terminal area is the input that produces the distribution more skewed towards the
right. These distributions are preferable because it is less plausible that there are
more inefficient agents (ports) than efficient ones.

Fig. 8. Distribution of efficiency scores

These distributions correspond to the input-efficiency estimates of the scores.
The rankings of the ports are very similar: the FDH and DEA scores for the 4
single input models have correlation coefficients of .45 and .65 for both input and
output scores. We begin by discussing the input efficiency scores to emphasize the
cost-reduction nature of adjustment, as the volume of throughput is generally not
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a decision variable.
The four single-input single-output models, using both the FDH and DEA

methods produce eight alternative rankings of efficiency. Most of pairs of rankings
are positively correlated and the individual scoring for each of the ports can be
found in Appendix C. To examine the possible empirical regularities of the four
DEA input efficiency scores (one set of efficiency scores for each of the four inputs),
we correlated them with the level of inputs and the level of output of each container
terminal. Recall that, in the case of an omitted factor of production, the efficiency
scores will be biased in favor of the DMU that use intensively this omitted input.
The correlation with the output is computed to examine if there is any relationship
between the efficiency scores and the scale of operation of the terminal.

Table 1 reports the correlation coefficients of the four efficiency scores with
the four inputs, namely, the area, sea-to-shore gantries (SSG), quay, yard and
mobile gantries (QYM), and tractors and trailers (T&T). Additionally, it reports
the correlation coefficient of the scores and the output indicator (mobilized cargo
in TEU). These correlations indicate:

a) the area and SSG are the inputs that produce efficiency scores with no bias,
given the low and insignificant values of the correlation coefficients. The other
two inputs (QYM and T&T) produce efficiency scores that show bias in favor
of units using the omitted factors of production;

b) there is mixed evidence on the relationship between terminal size and
efficiency.

The Area and SSG efficiency scores are uncorrelated with the volume of cargo, but
the other efficiency scores are positively correlated with it. Other sections explore
in more detail this crucial topic.

Table 1
Correlation coefficients between input-efficiency scores and input and output levels

Inputs or Efficiency Efficiency Efficiency Efficiency

output score-area score-SSG score-QYM score-T&T

indicator

Area -.53 -.29 .29 .32

SSG -.12 -.48 .33 .46

QYM -.04 -.10 -.28 .22

T&T -.19 -.03 .29 -.19

TEU .14 .04 .50 .50

Examining the 25th percentile (most efficient) ports of the different efficiency
scores distributions, as well as the bottom quartile (least efficient ports) in each
ranking, there are some ports that are repeatedly classified in one group or the
other. Table 2 reports the ports more commonly appearing in the efficient and
inefficient clusters, with the number of times they appeared in that category.
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Table 2
Most efficient ports and least efficient ports (common-restricted sample)

Most efficient Busan (8), Hong Kong (8) , Shanghai (8), Puerto

Limon (7), Salvador (6), Montevideo (5) Gioia

Tauro (5), Brisbane (4), Southhampton (4)

Least efficient Baltimore (6), Halifax (5), Savannah (5),

Shimizu (5), Thamesport (4). Limassol (4),

Buenos Aires (4), Aden (4), Rio Grande (4),

Dubĺın (4), Le Havre (4)

The average efficiency score of the bottom 25th percentile varies depending on
the selected input. For instance, when terminal area is considered, the average score
of the least efficient group is .82 while the average score of the top 25th percentile
is .96, implying that moving from one end of the distribution to the other would
entail using less terminal area by 17 percent. When the number of sea-to-shore
gantries is considered, the potential for cost reduction is even larger: the average
score of the inefficient group is .63, while the more efficient average score is .93.

Considering that infrastructure costs represent about 40 percent of total shipping
costs (Limao and Venables 2000), the potential for input reduction in the least
efficient quartile reported above of the order of 20 percent (average of area and
SSG) would imply a potential shipping cost reduction of the order of 13 percent, 5

very similar to estimates reported by previous authors. For instance, Clark et al.
(2002) estimated a cost reduction of 15 percent in the shift form the least efficient
to the more efficient tail of the distribution. However, these estimates of potential
cost reduction of transport costs seem much lower than those reported by Limao
and Venables, who report potential cost increases of 12 percent by moving from
the median to the most inefficient group.

The clustering reported in Table 2 shows interesting results to further exploration
in in-depth case studies. For instance, regarding geographical location, it is notable
that 3 Asian ports (Busan, Hong Kong, and Shanghai) are ranked unambiguously
in the most efficient category, while 3 North American ports (Baltimore, Halifax,
Savannah) on the Atlantic coast appear in the least efficient set. Geographical
location with respect to production and consumption centers is generally regarded
as a factor determining port traffic.

The above discussion leads to the relationship between traffic (size) and efficiency,
as the Asian ports have substantial traffic and high efficiency scores. What is the
relationship between traffic and efficiency? There seems to be evidence that in
northern Europe higher efficiency attracted traffic (ESPO (1996), Notteboom et al.
(2000)). And in India, there is some evidence of causality from port performance

5
An average reduction of input utilization of 32 percent described in the previous paragraph, multiplied

by the weight of infrastructure cost (40 percent) in total shipping cost
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to port traffic (De and Ghosh 2003). This indicates that policies that promote
efficiency are preferable than those that promote more extensive use of resources.

On the relationship between size and efficiency, Figure 9 shows the scatter plot of
the input-efficiency scores and the volume of cargo. When the area or ship-to-shore
gantries (SSG) are omitted, there is a strong correlation between efficiency and
volume of cargo. These estimates are biased in favor of the ports that use more
intensively those omitted factors, which are the larger ports. Hence, these results
do not allow verification of any clear and simple relationship between port size and
efficiency.

Other puzzles related to geographical location refer to the fact that ports across
the same bay (Mar del Plata), but in different countries, appear in opposite
extremes: Montevideo is classified in the efficient group while Buenos Aires is
ranked among the least efficient. Similarly, it is interesting to note that different
ports within the same country appear in both extremes of the distribution: in
Brazil, Salvador appears in the most efficient group, while Rio Grande shows in
the opposite extreme.

Fig. 9. Scatterplot of efficiency levels and (LOG) container throughput
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Examining the output efficiency scores, there are similarities and differences with
the input-efficiency scores. Among the similarities, we find that the correlation of
the efficiency scores with each of the inputs is lower when the scores are computed
with the area as single input (Table 3), the ship-to-shore gantry (SSG) factor yields
slightly higher correlations and the other two show clear bias in favor of ports using
the omitted factors of production.

Among the differences between the output-oriented efficiency scores and the
input-oriented ones is the positive and significant correlation between the scores
and the level of output. Figure 10 shows the unambiguous relationship indicating
that, based on this simple examination, larger ports tend to be more efficient than
smaller ones.
Table 3
Correlation coefficients between output-efficiency scores and input and output levels

Inputs or Efficiency Efficiency Efficiency Efficiency

output score-area score-SSG score-QYM score-T&T

levels

Area -.08 .18 .56 .42

SSG .21 .11 .62 .56

QYM .28 .33 .13 .41

T&T .23 .38 .51 .02

TEU .67 .73 .81 .80

Table 4
Most output-efficient ports and least output-efficient units (common-restricted sample)

Most efficient Hong Kong (8), Shanghai (8), Busan (7), Goia

Tauro (6), Brisbane (6), Yokohama (4),

Southhampton (4), Puerto Limon (4) New

York/New Jersey (4), Colombo, Manzanillo (4),

Khor Fakkan (4)

Least efficience Klaipeda (8), Maputo(8), Rauma (8), Willemstad

(8), Koper (7), Ravena (7), Baltimore (6),

Limassol (6), St. John (6), Port Sultan Qaboos

(6), Vigo (6)
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3.2.2. Increasing or decreasing returns to scale
Adjustment of a particular inefficient port towards the efficiency frontier depends

on whether it is located on the increasing returns to scale (IRS) or decreasing
returns (DRS) portion of the production frontier. As described in the previous
chapter (Fig. 4), if the port stands in the IRS portion, then increasing the scale of
operation will be optimal since it will reduce average cost per unit of output. If the
port is located on the DRS side, then a contraction of the amount of inputs is the
recommended strategy to move towards the efficiency frontier.

The reduction of scale inefficiency can be achieved either by reducing input
consumption (i.e. the scale of operation) or by increasing it. It is a port-specific
situation, as reported in Appendix D. Table D.1 reports the single-input case and
Table D. 2 reports the multiple-input case. In general, both estimates coincide.
Most of the ports in the developing countries would reduce scale inefficiency by
increasing the scale of operation, while about one third of them would reduce scale
inefficiency by contracting the level of input consumption. This is the case for
Buenos Aires, Colombo, Damietta, Khor Fakkan, Kingston, Santos and Shanghai.

Fig. 10. Scatterplot of output-efficiency and container throughput
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4. Conclusions and Directions for Future Work

The efficiency scores computed in the paper uncover that the margin for cost
reduction is significant. The most inefficient ports use inputs in excess of 20 to 40
percent of the level used in the most efficient ports. Given that infrastructure costs
represent about 40 percent of total maritime transport costs, total maritime costs
could be reduced by approximately 12 percent by moving from one extreme of the
distribution to the other.

Geographical location seems to be a determinant of efficiency but with puzzles.
For instance, some Asian ports appeared as the most efficient, while North
American ports appeared as inefficient. Whether this is due to proximity to the
production or consumption centers deserves further study. Similarly, further study
would be needed to clarify if the larger participation of the private sector in the
terminals of those ports, is in fact a major differentiating factor with respect to the
North American ports where port services are mostly publicly provided.

Evidence supports the hypothesis that larger ports are more efficient than smaller
ones. However, the question of causality is crucial. Evidence from European ports
and Indian ports seem to indicate that efficiency and performance are the leading
variable.

The results indicate that most ports in developing countries in our sample could
reduce scale inefficiency by increasing the scale of operations. However, about one
third of the ports in the sample would reduce the inefficiency by contracting the
scale of operation.
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Appendix A.

Data Envelopment Analysis (DEA) Model 6

A measure of production efficiency, perhaps the simplest one, is defined as the
ratio of output to input. It is, however, inadequate to deal with the existence of
multiple inputs and outputs. The relative efficiency for all decision-making units
(DMUs), j = 1, . . . , n, is then modified as the ratio of weighted outputs to weighted
inputs, as proposed by Farrell (1957), more precisely,

Relative efficiency =
∑s

r=1 uryrj∑m
i=1 vixij

(A.1)

where x and y are inputs and outputs, respectively, and u and v are the common
weights assigned to outputs and inputs, respectively. A challenge to this measure
immediately follows: it is difficult to justify the common weights given that DMUs
may value inputs and outputs differently.

The seminal paper by Charnes et al. (1978) proposes the following ratio form to
allow for difference in weights across DMUs, which establishes the foundation of data
envelopment analysis (DEA).

Max h0 =
∑s

r=1 µryr0∑m
i=1 vixi0

subject to ∑s
r=1 µryrj∑m
i=1 vixij

≤ 1, j = 1, · · · , n (A.2)

µr ≥ ε, r = 1, · · · , s
vi ≥ ε, i = 1, · · · ,m
ε > 0

In the model, there are j = 1, . . . , n observed DMUs which employ i =
1, . . . ,m inputs to produce r = 1, . . . , s outputs. One DMU is singled out each
time, designated as DMU0, to be evaluated against the observed performance of
all DMUs. The objective of model (A.2) is to find the most favorable weights,
µr and vi, for DMU0 to maximize the relative efficiency. The constraints are that
the weights will make ratio for every DMU be less than or equal to unity. The
solution value of the ratio must be 0 ≤ h∗0 ≤ 1. DMU0 is efficient if and only if
h∗0 = 1, otherwise it is considered as relatively inefficient. One problem with the
ratio formulation is that there are an infinite number of solutions: if µr and vi are
solutions to (A.2), so are αµr and αvi, ∀α > 0.

6 For more technical expositions, see Farrell (1957), Charnes et al. (1978), Coelli (1996),
Bowlin (1998), and Murillo-Zamorano (2004).
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It is worth observing one important feature of model (A.2): in maximizing
the objective function, it is the relative magnitude of the numerator and the
denominator that really matters and not their particular values. It is thus equivalent
to setting the denominator to a constant, say 1, and maximizing the numerator.
This transformation will not only lead to the uniqueness of solution but also convert
the fractional formulation of model (A.2) into a linear programming problem in
model (A.3).

Max
s∑

r=1

µryr0

subject to
m∑

i=1

vixi0 = 1 (A.3)

s∑
r=1

µryrj −
m∑

i=1

vixij ≤ 0, j = 1, · · · , n

−µr ≤ −ε, r = 1, · · · , s
−vi ≤ −ε, i = 1, · · · ,m

Model (A.3) facilitates straightforward interpretation in terms of economics. The
objective is now to maximize the weighted output per unit weighted input under
various conditions, the most critical one being that the virtual output does not

exceed the virtual input for any DMU. The optimal value of
s∑

r=1
µ∗ryr0 indicates

the efficiency of DMU0. Since model (A.3) is a linear programming, one may convert
the maximization problem into a minimization problem, namely a dual problem,
by assigning a dual variable to each constraint in the primal (A.3). Specifically,
dual variables θ, λj , ηr, γi are assigned as follows.

Max
s∑

r=1

µryr0 Dual variable

subject to
m∑

i=1

υixi0 = 1 θ (A.3’)

s∑
r=1

µryrj −
m∑

i=1

νixij ≤ 0, j = 1, · · · , n λj

−µr ≤ ε, r = 1, . . . , s ηr

−υi ≤ −ε, i = 1, . . . ,m γi

A dual minimization problem is thus derived as model (A.4). It is clear that
model (A.4) has m+ s constraints while model (A.3) has n+m+ s+ 1 constraints.
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Since n (the number of DMUs) is usually considerably larger than m+s (number of
inputs and outputs), the dual DEA significantly reduces the computational burden
and is easier to solve than the primal.

Min θ − ε[
m∑

i=1

γi +
s∑

r=1

ηr]

subject to

θxi0 −
n∑

j=1

xijλj − γi = 0 (A.4)

yr0 =
n∑

j=1

yrjλj − ηr

λj ≥ 0, ηr ≥ 0, γi ≥ 0
i = 1, · · · ,m, r = 1, · · · , s, j = 1, · · · , n

More importantly, the duality theorem of linear programming states that the
solution value to the objective function in (A.4) is exactly equal to that in (A.3).
And, the dual variables, (λ1, λ2, · · · , λn), have the interpretation of Lagrange
multipliers. That is, the value of a dual variable is equal to the shadow price of
Lagrange Multiplier. It is also known that, from standard constrained optimization
problem, generally λj > 0 when the constraint in (A.3’) is binding and λj = 0
if not. Note that the binding constraint in (A.3) implies that the corresponding
DMU is efficient. In another word, efficient units are identified by positive λ’s
while inefficient units are given λ’s of zero. The DMU in question in model (A.4)
is thus compared with the efficient DMUs only, named as comparison peers in the
literature. The solution values of λ′sreflect the exact weights assigned to each peer
in the evaluation of DMU0.

Since only efficient DMUs exert effective constraints in model (A.4), as argued
above, the input-output bundle, (

∑n
j=1 xijλj ,

∑n
j= yrjλj), i = 1, · · · ,m and r =

1, · · · , s, is the most efficient combination for. To achieve an output level yr0, which
is as close as possible to

∑n
j= yrjλj , DMU0 has to use an input bundle to meet the

minimum requirement,
∑n

j=1 xijλj . This further implies that the solution θ∗ is the
lowest proportion of the current input bundle, xi0 used by DMU0, which is actually
required to meet the minimum input requirement and produce target output yr0.
The solution θ∗ is defined as the efficiency score for DMU0. For instance, θ∗ = 0.60
implies that 40 percent of current input is a waste of resources.

Model (A.4) also offers the explanation why the data envelopment analysis is
so named. The first constraint in (A.4) defines a lower limit of inputs and the
second constraint an upper limit of outputs for DMU0, and within the limits θ is
minimized. The set of solutions to all DMUs forms an upper bound that envelops
all observations.
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Appendix B.

List of Ports

Table B.1
Constant sample – 51 ports

No. Port Country No. Port Country

1 Aden Yemen 27 Manzanillo Mexico

2 Altamira Mexico 28 Maputo Mozambique

3 Balboa Panama 29 Marsaxlokk Malta

4 Baltimore USA 30 Montevideo Uruguay

5 Brisbane Australia 31 New York/New Jersey USA

6 Buenos Aires Argentina 32 Port Sultan Qaboos Oman

7 Busan South Korea 33 Port of Spain Trinidad & Tobago

8 Cartagena Colombia 34 Puerto Cortes Honduras

9 Casablanca Morocco 35 Puerto Limon Costa Rica

10 Colombo Sri Lanka 36 Rauma Finland

11 Damietta Egypt 37 Ravenna Italy

12 Dammam Saudi Arabia 38 Rio Grande Brazil

13 Dublin Ireland 39 Salvador Brazil

14 Genoa Italy 40 Santos Brazil

15 Gioia Tauro Italy 41 Savannah USA

16 Guayaquil Ecuador 42 Shanghai China

17 Halifax Canada 43 Shimizu Japan

18 Hong Kong China 44 Southampton UK

19 Khor Fakkan UAE 45 St John NB Canada

20 Kingston Jamaica 46 St Petersburg Russia

21 Klaipeda Lithuania 47 Thamesport UK

22 Koper Slovenia 48 Thessaloniki Greece

23 Le Havre France 49 Vigo Spain

24 Leixoes Portugal 50 Willemstad Netherlands Antilles

25 Limassol Cyprus 51 Yokohama Japan

26 Lisbon Portugal
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Table B.2
Variable sample – 82 ports at maximum

Port Country Port Country

Abidjan Cote d’Ivoire Kristiansand Norway

Aden Yemen Kumport Turkey

Alexandria Egypt Le Havre France

Altamira Mexico Leixoes Portugal

Balboa Panama Limassol Cyprus

Baltimore USA Lisbon Portugal

Bangkok Thailand Liverpool UK

Barranquilla Colombia Manzanillo Mexico

Beira Mozambique Maputo Mozambique

Brisbane Australia Marsaxlokk Malta

Buenos Aires Argentina Montevideo Uruguay

Busan South Korea Nagoya Japan

Callao Peru New York/New Jersey USA

Cape Town South Africa Oranjestad Aruba

Cartagena Colombia Palma de Mallorca Balearic Is

Casablanca Morocco Port Sultan Qaboos Oman

Colombo Sri Lanka Port of Spain Trinidad & Tobago

Damietta Egypt Puerto Cortes Honduras

Dammam Saudi Arabia Puerto Limon Costa Rica

Djibouti Djibouti Puerto Manzanillo Panama

Dubai UAE Rauma Finland

Dublin Ireland Ravenna Italy

Fort-de-France Martinique Rio Grande Brazil

Fortaleza Brazil Salvador Brazil

Fraser Port Canada San Antonio Chile

Fredrikstad Norway Santo Tomas de Castilla Guatemala

Freeport2 Bahamas Santos Brazil

Genoa Italy Savannah USA

Gioia Tauro Italy Seattle USA

Guayaquil Ecuador Shanghai China

Hakata Japan Shimizu Japan

Halifax Canada Southampton UK

Helsinki Finland St John NB Canada

Heraklion Greece St John’s NF Canada

Hong Kong China St Petersburg Russia

Keelung Taiwan Thamesport UK

Khor Fakkan UAE Thessaloniki Greece

Kingston Jamaica Tilbury UK

Kitakyushu Japan Vigo Spain

Klaipeda Lithuania Willemstad Netherlands Antilles

Koper Slovenia Yokohama Japan
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Appendix C.

Input oriented efficiency scores – Constant sample – 51 ports
Single input Two inputs

Ship-shore Quay, yard & Terminal Tractors & Ship-shore gantry

gantry mobile gantry area trailers +terminal area

Port Year FDH DEA FDH DEA FDH DEA FDH DEA FDH DEA

Aden 2000 0.790 0.790 0.850 0.587 0.820 0.819 0.400 0.401 0.867 0.833

Altamira 2000 0.835 0.835 0.760 0.493 0.890 0.893 0.750 0.747 0.945 0.895

Balboa 2000 0.709 0.710 0.570 0.296 0.880 0.875 0.540 0.544 0.875 0.875

Baltimore 2000 0.525 0.525 0.620 0.484 0.740 0.705 0.570 0.354 0.738 0.705

Brisbane 2000 0.837 0.837 0.770 0.586 1.000 1.000 1.000 0.799 1.000 1.000

Buenos Aires 2000 0.722 0.590 0.490 0.401 0.890 0.795 0.740 0.527 0.890 0.795

Busan 2000 1.000 0.899 1.000 0.726 0.990 0.927 0.900 0.742 1.000 0.931

Cartagena 2000 0.811 0.811 0.630 0.474 0.830 0.829 0.590 0.460 0.878 0.857

Casablanca 2000 0.714 0.714 0.800 0.575 0.960 0.958 0.510 0.355 0.958 0.958

Colombo 2000 1.000 1.000 0.500 0.468 1.000 0.968 0.720 0.648 1.000 1.000

Damietta 2000 0.849 0.662 0.660 0.526 0.940 0.826 0.760 0.515 0.941 0.827

Dammam 2000 0.620 0.620 0.680 0.516 0.860 0.810 0.770 0.466 0.856 0.810

Dublin 2000 0.654 0.654 0.770 0.587 0.910 0.859 1.000 0.690 0.909 0.859

Genoa 2000 0.734 0.712 0.520 0.477 0.910 0.8687 0.800 0.698 0.908 0.868

Gioia Tauro 2000 0.911 0.768 0.660 0.652 0.990 0.910 1.000 1.000 0.993 0.910

Guayaquil 2000 0.964 0.964 0.690 0.519 0.860 0.858 0.700 0.541 0.965 0.964

Halifax 2000 0.586 0.586 0.580 0.454 0.860 0.825 0.870 0.558 0.855 0.825

Hong Kong 2000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Khor Fakkan 2000 0.790 0.700 0.580 0.503 0.990 0.911 0.740 0.578 0.990 0.911

Kingston 2000 0.777 0.641 0.550 0.453 0.920 0.826 0.900 0.653 0.921 0.826

Klaipeda 2000 0.811 0.811 0.340 0.343 0.830 0.827 0.500 0.496 0.827 0.827

Koper 2000 0.725 0.725 0.750 0.416 0.850 0.853 0.580 0.580 0.853 0.853

Le Havre 2000 0.677 0.652 0.700 0.634 0.860 0.822 0.560 0.489 0.863 0.822

Leixoes 2000 0.714 0.714 0.640 0.452 0.890 0.890 1.000 1.000 0.890 0.890

Limassol 2000 0.692 0.692 0.750 0.517 0.830 0.832 0.380 0.384 0.833 0.832

Lisbon 2000 0.585 0.585 0.630 0.472 0.840 0.839 0.700 0.531 0.839 0.839

Manzanillo1 2000 0.809 0.809 0.730 0.550 0.900 0.898 0.730 0.573 0.951 0.912

Maputo 2000 0.790 0.790 0.380 0.383 0.940 0.939 1.000 1.000 0.939 0.939

Marsaxlokk 2000 0.721 0.641 0.510 0.441 0.950 0.881 0.670 0.532 0.955 0.881

Montevideo 2000 0.964 0.964 0.840 0.595 0.920 0.921 0.650 0.430 0.976 0.964

New York/New Jersey 2000 0.833 0.727 1.000 1.000 0.880 0.819 0.710 0.575 0.883 0.820

Port Sultan Qaboos 2000 0.837 0.837 0.590 0.356 0.880 0.878 0.380 0.383 0.930 0.878

Port of Spain 2000 0.811 0.811 0.600 0.426 0.910 0.907 0.450 0.454 0.960 0.910

Puerto Cortes 2000 0.790 0.790 0.760 0.560 0.890 0.893 0.620 0.454 0.944 0.899

Puerto Limon 2000 1.000 1.000 0.880 0.701 1.000 0.969 0.790 0.518 1.000 1.000

Rauma 2000 0.934 0.934 0.630 0.354 0.860 0.861 0.480 0.476 0.934 0.934

Ravenna 2000 0.688 0.688 0.730 0.472 0.830 0.833 0.490 0.489 0.834 0.833

Rio Grande 2000 0.772 0.772 0.870 0.624 0.920 0.923 0.690 0.483 0.923 0.923

Salvador 2000 1.000 1.000 0.840 0.480 1.000 1.000 0.720 0.721 1.000 1.000

Santos 2000 0.779 0.685 0.660 0.570 0.950 0.873 0.690 0.538 0.950 0.873
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Input oriented efficiency scores – Constant sample – 51 ports (cont.)
Savannah 2000 0.697 0.609 0.570 0.485 0.810 0.746 0.970 0.744 0.814 0.746

Shanghai 2000 1.000 1.000 1.000 1.000 1.000 0.976 1.000 0.973 1.000 1.000

Shimizu 2000 0.663 0.663 0.630 0.460 0.870 0.869 0.660 0.484 0.869 0.869

Southampton 2000 0.758 0.678 0.760 0.659 0.930 0.860 0.830 0.662 0.930 0.860

St John NB 2000 0.790 0.790 1.000 1.000 0.870 0.868 0.540 0.544 0.868 0.868

St Petersburg 2000 0.670 0.670 0.680 0.483 0.920 0.921 0.690 0.464 0.922 0.921

Thamesport 2000 0.649 0.649 0.550 0.434 0.910 0.871 0.870 0.558 0.906 0.871

Thessaloniki 2000 0.681 0.681 0.940 0.640 0.880 0.876 0.530 0.527 0.877 0.876

Vigo 2000 1.000 1.000 0.670 0.419 0.870 0.874 0.390 0.393 1.000 1.000

Willemstad 2000 0.772 0.772 0.970 0.520 0.880 0.884 0.490 0.493 0.885 0.884

Yokohama 2000 0.857 0.698 0.560 0.540 0.960 0.866 0.710 0.690 0.955 0.866

Aden 2001 0.790 0.790 0.620 0.454 0.820 0.819 0.310 0.310 0.867 0.841

Altamira 2001 0.835 0.835 0.760 0.503 0.880 0.883 0.600 0.602 0.935 0.888

Balboa 2001 0.709 0.710 0.570 0.416 0.880 0.876 0.360 0.364 0.876 0.876

Baltimore 2001 0.525 0.525 0.620 0.477 0.740 0.699 0.210 0.209 0.738 0.699

Brisbane 2001 0.837 0.837 0.770 0.588 1.000 1.000 0.510 0.512 1.000 1.000

Buenos Aires 2001 0.944 0.594 0.510 0.405 0.930 0.808 0.780 0.380 0.966 0.808

Busan 2001 1.000 0.883 1.000 0.717 0.990 0.933 0.910 0.755 1.000 0.936

Cartagena1 2001 0.811 0.811 0.630 0.488 0.880 0.840 0.780 0.321 0.878 0.862

Casablanca 2001 0.629 0.629 0.800 0.582 0.960 0.958 0.260 0.263 0.958 0.958

Colombo 2001 1.000 0.784 0.480 0.445 1.000 0.945 0.670 0.555 1.000 0.945

Damietta 2001 0.982 0.616 0.570 0.453 0.950 0.826 0.770 0.368 0.989 0.826

Dammam 2001 0.620 0.620 0.680 0.519 0.860 0.812 1.000 1.000 0.856 0.812

Dublin 2001 0.639 0.639 0.770 0.581 0.830 0.827 0.450 0.448 0.828 0.827

Genoa 2001 0.912 0.695 0.500 0.450 0.900 0.845 0.740 0.575 0.911 0.845

Gioia Tauro 2001 0.902 0.756 0.660 0.640 0.990 0.904 1.000 0.954 0.993 0.904

Guayaquil 2001 0.964 0.964 0.620 0.460 0.860 0.858 0.340 0.335 0.965 0.964

Halifax 2001 0.586 0.586 0.580 0.451 0.850 0.812 0.870 0.363 0.848 0.812

Hong Kong 2001 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Khor Fakkan 2001 0.985 0.693 0.580 0.504 1.000 0.915 0.740 0.490 1.000 0.915

Kingston 2001 0.982 0.692 0.550 0.466 0.930 0.843 0.900 0.569 0.982 0.843
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Input oriented efficiency scores – Constant sample – 51 ports (cont.)
Klaipeda 2001 0.811 0.811 0.710 0.350 0.830 0.827 0.390 0.384 0.827 0.827

Koper 2001 0.725 0.725 0.750 0.423 0.850 0.853 0.450 0.448 0.853 0.853

Le Havre 2001 0.911 0.695 0.700 0.632 0.890 0.828 0.560 0.442 0.911 0.828

Leixoes 2001 0.714 0.714 0.640 0.453 0.890 0.890 0.780 0.774 0.890 0.890

Limassol 2001 0.692 0.692 0.750 0.507 0.830 0.832 0.300 0.297 0.833 0.832

Lisbon 2001 0.585 0.585 0.650 0.488 0.840 0.839 0.360 0.360 0.839 0.839

Manzanillo1 2001 0.809 0.809 0.730 0.552 0.900 0.898 0.370 0.373 0.951 0.913

Maputo 2001 0.725 0.725 0.380 0.383 0.940 0.939 0.780 0.774 0.939 0.939

Marsaxlokk 2001 0.936 0.669 0.510 0.445 0.970 0.888 0.670 0.461 0.975 0.888

Montevideo 2001 0.964 0.964 0.840 0.597 0.920 0.921 0.340 0.341 0.976 0.964

New York/New Jersey 2001 0.825 0.732 1.000 1.000 0.880 0.824 0.710 0.580 0.883 0.825

Port Sultan Qaboos 2001 0.678 0.678 0.590 0.363 0.880 0.878 0.300 0.302 0.879 0.878

Port of Spain 2001 0.811 0.811 0.600 0.421 0.910 0.907 0.350 0.351 0.960 0.908

Puerto Cortes 2001 0.790 0.790 0.760 0.553 0.890 0.893 0.320 0.318 0.944 0.897

Puerto Limon 2001 1.000 1.000 0.880 0.694 1.000 0.963 0.790 0.342 1.000 1.000

Rauma 2001 0.934 0.934 0.620 0.346 0.860 0.861 0.370 0.369 0.934 0.934

Ravenna 2001 0.688 0.688 0.730 0.459 0.830 0.833 0.380 0.378 0.834 0.833

Rio Grande 2001 0.756 0.756 0.640 0.470 0.790 0.786 0.320 0.315 0.832 0.806

Salvador 2001 1.000 1.000 0.840 0.492 1.000 1.000 0.560 0.558 1.000 1.000

Santos 2001 1.000 0.716 0.660 0.570 0.960 0.876 0.690 0.450 1.000 0.876

Savannah 2001 0.906 0.635 0.570 0.489 0.820 0.752 0.970 0.638 0.906 0.753

Shanghai 2001 1.000 1.000 1.000 1.000 1.000 0.986 1.000 0.996 1.000 1.000

Shimizu 2001 0.663 0.663 0.630 0.448 0.870 0.869 0.340 0.336 0.869 0.869

Southampton 2001 0.981 0.701 0.760 0.662 0.940 0.859 0.830 0.573 0.981 0.859

St John NB 2001 0.790 0.790 1.000 1.000 0.870 0.868 0.420 0.421 0.868 0.868

St Petersburg 2001 0.638 0.638 0.680 0.522 0.900 0.855 0.360 0.354 0.903 0.855

Thamesport 2001 0.635 0.635 0.550 0.428 0.910 0.863 0.870 0.345 0.906 0.863

Thessaloniki 2001 0.681 0.681 0.940 0.640 0.880 0.876 0.410 0.408 0.877 0.876

Vigo 2001 1.000 1.000 0.670 0.416 0.870 0.874 0.310 0.304 1.000 1.000

Willemstad 2001 0.772 0.772 0.970 0.529 0.880 0.884 0.380 0.381 0.885 0.884

Yokohama 2001 0.843 0.696 0.510 0.490 0.949 0.858 0.705 0.653 0.949 0.858
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