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Abstract

This article uses a cointegrated VAR model to test the expectation hypothesis of

the Brazilian term structure of interest rates. Using monthly data from January 1995

to February 2010, this paper presents evidence that di¤erences between two spreads

are stationary. This indicates that the curvature may be more informative indicator

of expected future interest rates than the slope. Level and slope are characterized by

deriving the common trends using Proietti (1997) methodology. The analysis of this

representation allows to link common trends with macroeconomic variables.

Resumo

Este artigo usa o modelo VAR com cointegração para testar a hipótese das expec-

tativas na estrutura a termo das taxas de juros brasileiras. Usando dados mensais de

Janeiro de 1995 até Fevereiro de 2010, este artigo apresenta evidências que as diferenças

entre dois spreads são estacionárias. Isto indica que a curvatura pode ser um indicador

mais informativo das taxas de juros futuras esperadas que a inclinação. O nível e a in-

clinação são caracterizados pela derivação das tendências comuns usando a metodologia

de Proietti (1997) A análise desta representação ajuda a relacionar tendências comuns

e variáveis macroeconômicas.
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1. Introduction

The relationship between short- and long-term interest rates, or the process of formation

of the term structure of interest rates, is relevant to �nancial market participants, whose

major concern is to make inferences about investment opportunities, and also to monetary

authorities, whose major concern is to monitor agents�expectations.

The most widely known theory of the term structure of interest rates, the Expectations

Hypothesis (EH), posits that a long-term spot interest rate is the long-term average of the

expected future spot short-term rates plus a time-invariant term premium.

According to the E¢ cient Markets model, the empirical U.S. and European literature

tests the EH under Rational Expectations, conventionally called the rational expectations

hypothesis (hereinafter referred to as REH). Shiller (1979) rejects the REH by showing that

the U.S. long-term rate was relatively more volatile than the one justi�ed by the present

value model of short rates for the 1966-77 period. Mankiw and Summers (1984) analyze the

behavior of two pairs of maturities in the U.S.bond market: maturities of six months and

twenty years, and three months and six months for the 1963-1983 period. They reject the

REH and also reject the alternative overreaction hypothesis of the long rate to the current

short rate. Mankiw and Miron (1986) use U.S. treasury bonds with maturities between three

and six months to test the validity of the REH for the 1890-1979 period. They reject the

REH for all subperiods, except for 1890-1914, prior to the founding of the Federal Reserve

System (FED). Mankiw (1986), using data on the USA, Canada, the United Kingdom, and

Germany, rejects the REH when testing several of its implications. The author reinforces his

conclusions by showing that changes in nondiversi�able risk, or changes in asset supply may

not satisfactorily explain the large �uctuations in interest rates. Campbell and Shiller (1987)

extend the present value model to nonstationary series and, although they reject the REH

for U.S. data with maturities of 20 years and one month for the 1959-78 period, they show

that the theoretical spread of the REH is closely related to the observed spread. Campbell

and Shiller (1991) examine postwar US term structure data and report a behavior that is not

consistent with the REH. For any maturity between one month and ten years, they conclude

that a high yield spread between long and short rates predicts a long-term increase in the

short rate according to the REH, but a short-term decline in the long rate that runs counter

to the REH. Hardouvelis (1994) analyzes the behavior of interest rates in G7 countries and,

by using instrumental variables, he manages to reverse the negative correlation between the

yield spread and the short-run change in the long rate for all countries except the USA, where

the yield spread seems to overreact to the expected change in short rates. Quite recently,
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Longsta¤ (2000), after working with REPO-agreement series as proxies for U.S. short-term

risk-free rates, has not rejected the REH for maturities of up to three months. In brief, the

REH is almost always rejected for the USA and often not rejected for other G7 countries.

The frequent rejection of the REH aroused the interest in the construction of a variable

term premium. Hardouvelis (1994) suggests that the long rate is measured with noise,

Modigliani and Sutch (1966) mention variations in the supply of long bonds encouraged by

the public debt management policy, and Engle et al. (1987) build a model with a time-varying

risk premium. An alternative to the variable term premium is that the failure of the REHmay

result from persistent expectational errors. Froot (1989) uses surveys on the expectations

of interest rates to show the relevance of systematic expectational errors in long horizons.

Campbell and Shiller (1991) suggest an overreaction of the yield spread to the expected future

changes in short rates.

Giese (2008) extends a common approach to test the EH of the term structure. If spreads

between two yields are nonstationary, the EH fails. However, if di¤erences between two

spreads are stationary suggests that the curvature of the yield curve may be a more meaningful

indicator of expected future interest rates than the slope.

In Brazil, the literature on the topic is quite recent, and so is the formation of a testable

term structure. Tabak and Andrade (2001) analyze the REH for the Brazilian term structure

using daily data and maturities between two and twelve months from January 1995 and April

2001. By using the lagged yield spread as instrument for the current spread, they �nd a time

dependence of the term premium and conclude for the rejection of the REH. Lima and Issler

(2002) test the REH in the context of the present value model developed in Campbell and

Shiller (1987) for monthly data and maturities of one month, 180 days and 360 days from

January 1995 and December 2001. After they tested the implications of the present value

model they concluded that the evidence is only partially favorable to the REH.

This paper examines the Brazilian term structure of interest rates considering the

stationarity of the derivatives of the yield curve as suggested in Giese (2008). The di¤erences

between spreads allows to test the stationarity of weighted di¤erences between spread in a

Vector Error Correction Model. We use monthly data from January 1995 to February 2010

and present evidence that di¤erences between two spreads are stationary. This indicates that

the curvature may be a more informative indicator of expected future interest rates than

the slope. Level and slope are characterized by deriving the common trends inherent in a

cointegrated VAR using Proietti (1997) methodology.

Estes resultados sao importantes para participantes do mercado �nanceiro e autoridades
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monetárias porque revelam que apesar das preferencias dos individuos sobre determinada

maturidades variarem no tempo, preferencias relativas entre maturidades sao estacionárias

The present paper contains six sections, including the introduction. The second section

discusses the theoretical framework. Reduced form and long-run constraints are presented in

the third section. The fourth section presents the data analysis and preliminary tests. The

�fth section examines the empirical results. Finally, the sixth section concludes.

2. Theoretical Framework

The most widely known theory of the term structure of interest rates, the Expectations

Hypothesis (EH), posits that a long-term spot interest rate is the long-term average of the

expected future spot short-term rates plus a time-invariant term premium:

R
(n)
t =

1

k

Xk�1

i=0
EtR

(m)
t+mi +  nk ; (2.1)

where: R(n)t is the long-term interest rate with n periods, R(m)t is the short-term interest

rate of m periods, both measured levels, k = n=m is an integer, Et is the expectation

conditioned on the information available at date t, and the constant  k is the term premium.

If the EH holds, the term premium is constant and it is easy to understand the relationship

between the expected future rates and current rates. Changes in market expectations of

future short-term interest rates can result in long rate movements. In other words, except

for a constant premium, the long rate is an unbiased predictor of future short rates. On the

other hand, if the term premium varies through time, it is di¢ cult to distinguish between

changes in the long rate caused by the review of expected future short rates or changes in

the long rate caused by a time-varying term premium.

Rearranging equation (2.1) we found a convenient representation in terms of the spread

between yields of di¤erent maturities which could be tested empirically in this paper.

Subtracting R(m)t from both sides of (2.1) and rearranging it, we have:

S
(n;m)
t � R

(n)
t �R

(m)
t = Et

�
1

m

Xm�1

i=1

hXi

j=1

�
R
(m)
t+mj �R

(m)
t+m(j�1)

�i�
+  nk ;

or

S
(n;m)
t = EtS

(n;m)�
t +  nk ; (2.2)

where,

S
(n;m)�
t =

1

m

Xm�1

i=1

hXi

j=1

�
R
(m)
t+mj �R

(m)
t+m(j�1)

�i
=
1

m

Xm�1

i=1
(m� i)

�
R
(m)
t+mi �R

(m)
t+m(i�1)

�
(2.3)
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is a weighted average of future (k � 1) short-run changes in the short rate. Actually, if a
long-term increase in short-term rates is expected, the current yield of the long bond should

be higher than the current yield of the short-term bond, as a way to equalize the return until

the maturity of the �rst bond with the yield of the sequence of k investments in short-term

bonds between dates t and t+n: The variable S(n;m)�t is called perfect foresight spread, since,

except for the constant  k, it is the spread between long and short bonds if the forecast of

future short rates were perfect.

Since bond yields could be well approximated by processes integrated of order one, their

di¤erences are integrated of order zero and the �rst term on the right hand side of equation

(2.3) is stationary. If the term premium was stationary, we would expect the spreads (left

hand side of equation (2.3)) to be stationary, whilst non-stationary spreads would imply a

non-stationary term premium.

This framework could be extended to weighted di¤erences between spreads,

�
R
(n)
t �R

(m)
t

�
� c

�
R
(m)
t �R

(s)
t

�
=
1

n

Xn�1

i=1
(n� i)Et

�
R
(m)
t+mi �R

(m)
t+m(i�1)

�
� c

m

Xm�1

i=1
(m� i)Et

�
R
(s)
t+si �R

(s)
t+s(i�1)

�
+  nk � c mk

(2.4)

Rearranging equation (2.4) we found a convenient representation, as suggested in Giese

(2008), that will be tested empirically in this paper,�
R
(n)
t �R

(s)
t

�
� (1 + c)

�
R
(m)
t �R

(s)
t

�
=
1

n

Xn�1

i=1
(n� i)Et

�
R
(m)
t+mi �R

(m)
t+m(i�1)

�
� (1 + c)

m

Xm�1

i=1
(m� i)Et

�
R
(s)
t+si �R

(s)
t+s(i�1)

�
+  nk � (1 + c) mk (2.5)

where c is a constant. Equation (2.5) shows that if the spreads are pairwise cointegrated, the

weighted di¤erences between the term premia of di¤ering maturities have to be stationary.

In the case of cointegrated term premia, a deviation from the usual curvature may re�ect

changes in the future interest rate expectations and the yield curve could be used as indication

of expectations on the future path of interest rates.
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3. Reduced Form and Long-Run Constraints

A full discussion of the econometric models employed here can be found in Beveridge

and Nelson(1981), Stock and Watson(1988), Engle and Granger(1987), Campbell(1987),

Campbell and Deaton(1989), and Proietti(1997). We start by assuming that yt is a 5 � 1
vector containing the yields at time t of a zero coupon bonds with n months to maturity.

We also assume that all series individually contain a unit-root, and are generated by a p-th

order vector autoregression (VAR):

yt = �1yt�1 + �2yt�2 + � � �+ �pyt�p + "t (3.1)

or

yt � �1yt�1 � �2yt�2 � � � � � �pyt�p = "t;�
In � �1L� �2L

2 � � � � � �pL
p
�
yt = "t;

�(L) yt = "t:

Decomposing �(L) = In � �1L� �2L
2 � � � � � �pL

p as:

�(L) = ��(1)Lp + (1� L) � (L) ;

We have the vector error-correction model (VECM):

�yt � �1�yt�1 � �2�yt�2 � � � � � �p�1�yt�p+1 � �(1) yt�p = "t; or,

�yt � �1�yt�1 � �2�yt�2 � � � � � �p�1�yt�p+1 � ��0yt�p = "t;

where �j = �In +
Pj

i=1 �i, j = 1; 2; � � � ; p� 1.
We tested the theoretical framework presented early by determinig the number of

stationary cointegrating relations and non stationary commmon trends. Hence, the �nal

reduced form to be estimated, after appropriate testing is:

� yt = �1� yt�1 + : : : + �p�1� yt�p+1 + ��0yt�p + "t (3.2)

We turn now to the discussion of how to extract trends and cycles from (3.2). Jumping

straight to our results, we found that the system (3.2) is well described by a V ECM(p),

which can be put in state-space form, as discussed in Proietti(1997):

�yt+1 = Zft+1 (3.3)

ft+1 = Tft + Z 0"t+1;
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where,

ft+1 =

266664
�yt+1

�yt
...

�0yt�p

377775 ; T =
26666664
�1 �2 � � � �p�1 ���0 ��
IN 0 : : : 0 0 0
...

...
. . .

...
...

...

0 0 � � � IN 0 0

0 0 � � � 0 �0 Ir

37777775
with the associated VECM being,

�yt = �1�yt�1 + � � �+ �p�yt�p+1 + ��0yt�2 + "t; and,

Z = [IN 0 0] :

From the work of Beveridge and Nelson(1981), and Stock and Watson(1988), ignoring

initial conditions and deterministic components, the series in yt can be decomposed into a

trend (�t) and a cyclical component ( t), as follows:

yt = �t +  t;

where,

�t = yt + lim
l!1

lX
i=1

Et [�yt+i] ; and,

 t = � lim
l!1

lX
i=1

Et [�yt+i] :

It is straightforward to show that �t is a multivariate random-walk. Using the state-space

representation (3.3), we can compute the limits above. The cyclical and trend components

will be, respectively:

 t = �Z [Im � T ]�1 Tft;

�t = yt �  t: (3.4)

or, using formulas (6) and (7) in Proietti(1997),

 t = �K�� (L)�yt + Pyt; (3.5)

and

�t = K

tX
i=1

"i; (3.6)
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where K and P are projection matrices (see the Appendix).

We can also use (3.3) to forecast trend and cyclical components at any horizon into the

future. The forecast of  t+s, given information up to t, is:

b t+sjt = Et [ t+s] = �K�� (L)ZTft+s�1 + Pyt + PZ

 
sX
i=1

T i

!
ft;

and the forecast of �t+s, given information up to t, is:

b� t+sjt = �t;

since the best forecast of a random walk t+ s periods ahead is simply its value today.

To fully characterize the elements in (3.2), we need to compute the variance and the

covariance of forecasts of the trend and cyclical components. Recall that the conditional

expectation of a log-Normal random variable is just a function of the mean and variance of

the normal distribution associated with it. Hence, to compute the variances of these forecasts,

we have just to apply standard results of state-space representations. It is straightforward to

show that:

Et

h�
�t+s � b�t+sjt� ��t+s � b�t+sjt�0i = s �KQK 0;

where Et
�
"t+i"

0
t+i

�
= Q. We also have,

Et

��
 t+s � b t+sjt�� t+s � b t+sjt�0� = V QV 0 + P

 
s�1X
i=1

W (i)QW (i)0

!
P 0

and

Et

��
�t+s � b�t+sjt� � t+s � b t+sjt�0� = KQV 0 +K

"
s�1X
i=1

QW (i)0

#
P 0;

where V = [P �K�� (1)], as computed in the Appendix.

Equation (3.6) shows that the trend innovation is a rank k linear combination of "i, then

the common trends are ��t = �
0
?�(L)yt.

4. Data Analysis and Preliminary Tests

The Brazilian term structure of interest rates was observed at a monthly frequency from

September 1996 to February 2010. Figure 1 shows the constant maturity continuously

compounded spot rate per year. Three major aspects may be seen: the shift in the Brazilian

exchange rate system in January 1999, the energy crisis and the 2002 Brazilian election.
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Figure 1 Graph of monthly of the spot interest rates
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Table 1 shows some descriptive statistics of the levels and �rst di¤erences of monthly spot

interes rate. Similarly to international evidence, the Brazilian term structure of interest rates

was positively sloped, with higher volatility on shorter and longer maturities. As often occurs

with interest rate series, a high autocorrelation indicates that the available information in the

sample is actually smaller than its size could indicate (150 observations). The nonstationarity

of the series was assessed by the Dickey-Fuller Test with GLS Detrending (DF-GLS) of Elliott,

Rothenberg and Stock (1996), whose null hypothesis is nonstationarity. The results provide

evidence of nonstationarity in levels and stationarity in di¤erences.
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Descriptive statistics of Brazilian annual spot rates from September 1997 to February 2010
Rates in the level Monthly difference in the rates

Statistics R(30) R(90) R(180) R(360) R(720) R(30) R(90) R(180) R(360) R(720)

 Mean 0.1679 0.1693 0.1720 0.1768 0.1836 ­0.0007 ­0.0007 ­0.0007 ­0.0007 ­0.0007
 Median 0.1636 0.1658 0.1653 0.1656 0.1644 ­0.0015 ­0.0015 ­0.0010 ­0.0013 ­0.0023
 Maximum 0.4720 0.4631 0.4322 0.4315 0.4425 0.2091 0.2004 0.1642 0.1567 0.1565
 Minimum 0.0824 0.0825 0.0834 0.0880 0.0965 ­0.1127 ­0.1028 ­0.1213 ­0.1277 ­0.1208
 Std. Dev. 0.0615 0.0605 0.0606 0.0631 0.0669 0.0293 0.0264 0.0249 0.0248 0.0256
 Skewness 1.6899 1.4909 1.1805 1.0543 0.9728 4.1355 3.4439 2.1491 1.4099 1.3465
 Kurtosis 7.4664 6.9981 5.4238 4.6053 3.8699 32.8367 30.4729 22.3112 18.9364 15.7427

 Jarque­Bera 196.0704 155.4763 71.5585 43.8921 28.3861 5991.4900 5013.7570 2446.2350 1637.0040 1053.1100
 Probability 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

ρ 1 0.8800 0.8980 0.9090 0.9170 0.9220 ­0.0910 0.0800 0.1100 0.0930 0.0070
ρ 2 0.7760 0.7760 0.7940 0.8160 0.8380 ­0.1260 ­0.3080 ­0.3540 ­0.3120 ­0.2140
ρ 3 0.7000 0.7110 0.7380 0.7600 0.7870 ­0.0080 ­0.0570 ­0.0830 ­0.0990 ­0.1020
ρ 4 0.6260 0.6580 0.6960 0.7210 0.7480 0.1140 0.0800 0.0110 ­0.0430 ­0.0030
ρ 5 0.5270 0.5890 0.6520 0.6880 0.7100 ­0.1190 0.0200 0.0880 0.1000 0.0850

DF­GLS ­0.11 ­1.94 0.09 ­0.22 ­1.08 ­3.14 ­1.60 ­2.03 ­2.31 ­2.01

Table 1

Notes:
(i) Size of the samples: 150 observations in levels and 149 in differences;
(ii) DF­GLS tests H0: nonstationary series. Daily level includes intercept with a window of 13 lags. Daily difference uses 12 lags;
(iii) DF­GLS critical values: ­2.58 (1%), ­1,94 (5%) and ­1.62 (10%);
(v) ρ i  indicates autocorrelation of order i .

Although the nonstationarity in interest rates seems questionable in light of the economic

theory, several studies assume the nonstationarity of the interest rate levels and focus on

modeling di¤erences of interest rates or of some di¤erence between maturities, such as the

yield spread or the holding return. The cointegration of longer- and shorter-term with unit

coe¢ cientis is a necessary condition for the REH to be valid. The condition is not su¢ cient

because the cointegration requires stationarity on expectations errors and term premium. In

other words, the cointegration is consistent with a time-varying term premium.

5. Empirical Results

The theoretical relationships presented in sections 2 and 3 are investigated by determining

the number of cointegrating relations and nonstationary common trends, and testing explicit

hypotheses about the parameters of these relations.

The vector equilibrium correction model (VECM(p)), equation (3.2), consists of monthly

end-of-period yields for Brazilian zero-coupon bonds of �ve maturities, one month (R(30)),

three months (R(90)), six-months (R(180)), one-year (R(360)) and two-years (R(720)) bonds. The

choice re�ects the structure of the yield curve with short-, medium- and long-term maturities.
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Initially, we need to determine the lag length of the model. The choice of lag length

re�ects the persistence of short-term e¤ects. We use the usual selection criteria and chose

thirteen lags in levels and twelve lags in di¤erences, which means that twelve matrices need

to be estimated in the VECM (3.2).

Then we estimate the cointegration rank using the trace statistics and the maximum

eigenvalue statistic. Table 2 reports the results of Johansen (1988) cointegration test applied

to the set of interest rates used in this exercise. As can be seen from this table, we

accept the hypothesis of three cointegrating vectors using the two previously cited statistics.

Cointegrating rank equal to three implies the existence of two common trends which in turn

imply four spreads that can not be stationary, and the expectations hypothesis is not valid.

Hypothesized
No. of CE(s) Eigenvalue Trace

Statistic
Critical

Value (5%) Prob.** Max­Eigen
Statistic

Critical
Value (5%) Prob.**

None * 0.5638 188.70 69.82 0.00 113.66 33.88 0.00
At most 1 * 0.2349 75.04 47.86 0.00 36.68 27.58 0.00
At most 2 * 0.1678 38.37 29.80 0.00 25.16 21.13 0.01
At most 3 0.0866 13.20 15.49 0.11 12.42 14.26 0.10
At most 4 0.0057 0.78 3.84 0.38 0.78 3.84 0.38

Unrestricted Cointegration Rank Test
Table 2

Notes:
(i) Trace test indicates 3 cointegrating eqn(s) at the 0.05 level;
(ii) * denotes rejection of the hypothesis at the 0.05 level;
(iii) **MacKinnon­Haug­Michelis (1999) p­values.

Rank Test (Trace) Rank Test (Maximum Eigenvalue)

Table 3 displays the normalized coe¢ cients of the three cointegrating vectors chosen by the

Johansen (1988) methodology. We note that one-month bonds belongs only to the �rst

cointegration relation, three-months bonds belongs only to the second cointegrating relation

and six-months bonds belong only to the third cointegrating relation, while one-year and

two-years bonds belong to all three relations. The �rst cointegrating vector determines a

long-run relationship between yields of short-, medium- and long-term maturities, while the

other two vectors determine long-run relationships between yields of medium- and long-term

maturities.
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R(30) R(90) R(180) R(360) R(720)

1 0 0 ­2.02 1.10
(0.22) (0.20)

0 1 0 ­1.89 0.93
(0.16) (0.14)

0 0 1 ­1.62 0.63
(0.07) (0.07)

(i) standard error in parentheses;
(ii) R(n) denotes the log(1+R(n)/100)

Table 3
Cointegrating vectors

Normalized cointegrating coefficients

Notes:

The estimated coe¢ cients of the adjustment matrix are shown in Table 4 below. We can

note by the signi�cance of the estimated coe¢ cients that the importance of cointegration

relations in the adjustment matrix fall with maturity.

D(R(30)) 2.29 ­7.57 8.84
(0.96) (2.37) (2.39)

D(R(90)) 2.90 ­8.69 9.48
(1.13) (2.78) (2.81)

D(R(180)) 2.57 ­7.68 8.62
(1.20) (2.95) (2.97)

D(R(360)) 2.60 ­7.77 9.13
(1.39) (3.42) (3.46)

D(R(720)) 1.91 ­6.44 8.12
(1.69) (4.16) (4.20)

Table 4

Notes:
(i) standard error in parentheses;
(ii) D(R(n)) denotes the difference of log(1+R(n)/100)

Adjustment coefficients

Table 5 shows some descriptive statistics of the levels of yield spreads The nonstationarity of

the series was assessed by the Dickey-Fuller Test with GLS Detrending (DF-GLS) of Elliott,

Rothenberg and Stock (1996), whose null hypothesis is nonstationarity The result provides

evidence of nonstationarity in levels of yields spreads, except the yield spread for three months

and a month.
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Yield spreads
Statistics R(90) ­ R(30) R(180) ­ R(30) R(360) ­ R(30) R(720) ­ R(30) R(360) ­ R(90) R(360) ­ R(180) R(720) ­ R(360)

 Mean 0.0014 0.0041 0.0089 0.0157 0.0075 .0047 0.0068
 Median 0.0004 0.0025 0.0054 0.0092 0.0043 .0035 0.0050
 Maximum 0.0466 0.0816 0.0927 0.1248 0.0640 .0391 0.0389
 Minimum ­0.0356 ­0.0578 ­0.0642 ­0.0615 ­0.0316 ­.0146 ­0.0738
 Std. Dev. 0.0098 0.0179 0.0248 0.0328 0.0165 .0085 0.0123
 Skewness 0.1976 0.4694 0.6864 0.9396 0.9450 1.1309 ­1.2660
 Kurtosis 8.0254 6.0255 4.4861 4.0161 4.1949 4.9225 14.6606

 Jarque­Bera 158.8158 62.7163 25.5821 28.5219 31.2516 55.0707 889.8798
 Probability 0.00 0.00 0.00 0.00 0.00 0.00 0.00

ρ1 0.3000 0.4610 0.5980 0.7500 0.7310 .7920 0.5710
ρ2 0.2710 0.4110 0.5260 0.6090 0.6170 .6670 0.5700
ρ3 0.1290 0.2720 0.3610 0.4840 0.4660 .5330 0.4430
ρ4 0.0400 0.0910 0.1640 0.3060 0.2540 .3780 0.4320
ρ5 ­0.0210 ­0.0620 0.0330 0.1870 0.1090 .2700 0.3880

DF­GLS ­1.89 ­2.26 ­1.30 ­1.27 ­1.53 ­0.64 ­2.34

Table 5

Notes:
(i) Size of the samples: 150 observations in levels and 149 in differences;
(ii) DF­GLS tests H0: nonstationary series. Daily level includes intercept with a window of 13 lags. Daily difference uses 12 lags;
(iii) DF­GLS critical values: ­2.58 (1%), ­1,94 (5%) and ­1.62 (10%);
(v) ρ i  indicates autocorrelation of order i .

Descriptive statistics of levels of yield spreads from September 1997 to February 2010

We identify the adjustment matrix and cointegration matrix together. Identifying

cointegrating vectors, we can use these stationary relations and the weighted di¤erences

between spreads as shown in equation (2.5). Table 6 shows the normalized long-run relations.

The �rst equation indicates that the short, medium and long-end of the yield curve can be

characterized by a approximately stationary curvature, while the remaining two equations

indicate that the medium and long-end can also be characterized by stationary curvatures.

β 1 *y t β 2 *y t β 3 *y t

R(360) ­ R(30) ­0.57 R(360) ­ R(90) ­0.59 R(360) ­ R(180) ­0.59
(0.08) (0.07) (0.07)

R(720) ­ R(360) 0.60 R(720) ­ R(360) 0.52 R(720) ­ R(360) 0.35
(0.16) (0.11) (0.06)

C 0.00 C 0.00 C 0.00
(0.00) (0.00) (0.00)

(ii) R(n) ­ R(m) is the spread between yields of different maturities.

Normalized long­run relations
Table 6

Notes:
(i) standard error in parentheses;

Equation 1 Equation 2 Equation 3
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We found that spreads are not stationary, while linear combinations of these spreads are

stationary. This �nding is important for understanding how expectations on interest rates

are formed and consequently for monetary policy. This result suggest that deviations from

spreads are persistent, while equilibrium mean reversion is fast for di¤erences.

We used the methodology discussed in Proietti (1997) to decompose each maturity series

into a trend and cycle component and thus we could identify the two common trends. Figure

2 illustrates the shape of the common trends.

0.0

0.4

0.8

1.2

1.6

2.0

2.4

1998 2000 2002 2004 2006 2008

Common trend 1
Common trend 2

Figure 2 ­ Common trends

We found that common trends and in�ation are positively correlated, indicating that shocks

to the long rates that shift the yield curve appear to be related to in�ationary shocks.

6. Conclusions

This paper examines the Brazilian term structure of interest rates considering the stationarity

of the derivatives of the yield curve as suggested in Giese (2008). The di¤erences between

spreads allows to test the stationarity of weighted di¤erences between spread in a Vector

Error Correction Model.

We accept the hypothesis of cointegration rank equal to three, which implies the existence

of two common trends, which in turn imply four spreads that can not be stationary, and the

expectations hypothesis is not valid. The �rst cointegrating vector determines a long-run
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relationship between yields of short-, medium- and long-term maturities, while the other two

vectors determine long-run relationships between yields of medium- and long-term maturities.

We used the cointegrating relations and the weighted di¤erences between spreads to

identify normalized long-run relations, one equation indicates that the short, medium and

long-end of the yield curve can be characterized by a approximately stationary curvature,

while the remaining two equations indicate that the medium and long-end can also be

characterized by stationary curvatures.This �nding is important for understanding how

expectations on interest rates are formed and consequently for monetary policy. This result

suggest that deviations from spreads are persistent, while equilibrium mean reversion is fast

for di¤erences.
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A. State-Space Representation for Error-CorrectionModels and the
Beveridge and Nelson Decomposition (Proietti(1997))

Proietti(1997) discussed in some length how the Beveridge and Nelson(1981) decomposition

can be put in state-space form. Here we adapt some of this discussion. If the series yt are

generated by a vector autoregression (VAR):

yt � �1yt�1 � �2yt�2 � � � � � �pyt�p = "t;�
In � �1L� �2L

2 � � � � � �pL
p
�
yt = "t; or,

�(L) yt = "t:

and we decompose �(L) = In � �1L� �2L
2 � � � � � �pL

p as:

�(L) = ��(1)Lp + (1� L) � (L) ;

leading to the vector error-correction model (VECM):

�yt � �1�yt�1 � �2�yt�2 � � � � � �p�1�yt�p+1 � �(1) yt�p = "t; or,

�yt � �1�yt�1 � �2�yt�2 � � � � � �p�1�yt�p+1 � ��0yt�p = "t;

where �j = �In +
Pj

i=1 �i, j = 1; 2; � � � ; p � 1, it is straightforward to put the latter into
state space form. To save space, and jumping straight to the series modelled here, we start

by assuming that �yt is a 5 � 1 vector containing the instantaneous yield at time t of a
zero-coupon bond with maturity m, which can be modelled as VECM(p� 1) (or a VAR(p)),
where �0yt is the error-correction vector and � is the adjustment coe¢ cient vector. The

state-space form of the VECM(p� 1) is as follows:

�yt+1 = Zft+1 (A.1)

ft+1 = Tft + Z 0"t+1;

where,

ft+1 =

266664
�yt+1

�yt
...

�0yt�p

377775 ; T =
26666664
�1 �2 � � � �p�1 ���0 ��
IN 0 : : : 0 0 0
...

...
. . .

...
...

...

0 0 � � � IN 0 0

0 0 � � � 0 �0 Ir

37777775

18



with the associated VECM being,

�yt = �1�yt�1 + � � �+ �p�yt�p+1 + ��0yt�2 + "t; and,

Z = [IN 0 0] :

A.1. Trends and Cycles and State-Space Representation

The basic idea in Beveridge and Nelson(1981) is that, for unit-root processes with zero drift,

the random-walk trend in the series and its long-run forecast will both be the same. Hence,

for series in yt can be decomposed into a trend (�t) and a cyclical component ( t), as follows:

yt = �t +  t;

where,

�t = yt + lim
l!1

lX
i=1

Et [�yt+i] ; and,

 t = � lim
l!1

lX
i=1

Et [�yt+i] :

Using (??), we can compute the limits above. The cyclical component will be:

 t = �Z [Im � T ]�1 Tft: (A.2)

The trend in yt can be simply computed as:

�t = yt �  t:

A.2. Computing Mean Squared Errors

From Proposition 2 in Proietti(1997),

 t+1 = �(IN � P )(� (1) + 
�0)�1�� (L)�yt+1 + Pyt+1; (A.3)

and,

�t+1 = (IN � P )(� (1) + 
�0)�1�(L)yt+1

or,

��t+1 = (IN � P )(� (1) + 
�0)�1"t+1; (A.4)
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where P = (� (1)+
�0)�1
 [�0(� (1) + 
�0)�1
]�0, and � (L) = I2��1L, which is decomposed
as:

� (L) = � (1) + (1� L) �� (L) ; where,

�� (L) = �1;

in the present context.
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