Estimating the Brazilian Output Gap in an MS-DSGE Approach

Eleonora de Oliveira∗Andreza A. Palma†Marcelo S. Portugal‡

Área 4 - Macroeconomia, Economia Monetária e Finanças

Abstract

This paper aims to estimate the output gap for Brazil based on a fully specified DSGE model that incorporates Markov-Switching elements (MS-DSGE), to consider the possibility of regime shifts. We propose four versions of the model, among which consider changes in volatilities and in Taylor’s rule parameters. In order to compare our output gap estimate with other approaches, we perform prediction tests, both with the central bank’s reaction function and with the free price inflation Phillips curve. Our results in the first test indicates that the HP filter estimate performs better in the short and mid term, but the MS-DSGE estimate presented better results in the long-run. In the second exercise, no output gap series stands out among the approaches considered.

JEL Codes: C11, C32, E58, E52.

Keywords: Output Gap, Markov Switching, DSGE, Bayeasian Estimation.

Resumo

O objetivo deste paper é estimar o hiato do produto para o Brasil, utilizando um modelo DSGE com mudança de regime markoviana (MS-DSGE). São propostas quatro versões do modelo, entre as quais consideramos mudanças nas volatilidades e nos parâmetros da regra de Taylor. A fim de comparar nossa estimativa do hiato do produto com outras abordagens, nós realizamos testes de previsão considerando a função de reação do Banco Central e a Curva de Phillips. Em relação ao primeiro caso, nossos resultados mostram que a estimativa via filtro HP tem melhor performance no curto e médio prazo, mas a estimativa via MS-DSGE apresenta melhor resultado no longo prazo. Para o segundo caso, nenhuma das séries de hiato do produto estimadas se destacam entre as abordagens consideradas.

JEL Codes: C11, C32, E58, E52.

Keywords: Hiato do produto, Mudança de regime, DSGE, Estimação bayesiana.

∗Federal University of Rio Grande do Sul, Brazil (E-mail: eleonoradeoliveira@gmail.com)
†Federal University of São Carlos, National Council for Scientific and Technological Development and Visiting Researcher at IPEA - Institute of Applied Economic Research, Brazil
‡Federal University of Rio Grande do Sul and National Council for Scientific and Technological Development, Brazil
1 Introduction

In order to succeed in the monetary policy conduction, it is necessary to have a good evaluation of its effects, as Mishkin (1995) pointed out. With the inflation target regime adoption by Brazil, in June 1999, the mechanism of using the interest rate as a form of monetary policy transmission became a standard activity for the Brazilian Central Bank (BCB, henceforth). This method is also standard in the literature of the last seventy years and emerged in the basic Keynesian model: a contractionist monetary policy raises the real interest rate, which in turn leads to a raise in the capital cost, decreasing the investment level and a subsequent fall in aggregate demand and output. The importance of interest rate as an monetary policy instrument also gained strength with Taylor (1995), but in a microeconomic perspective, like the interest rate effects in the individual’s decisions.

But since the monetary policy effectiveness in reaching the inflation target depends, among other factors, on the economy’s idle capacity, it is essential to have an output gap estimate in order to evaluate the possible monetary policy effects to be adopted. According to Mishkin (2007), there are two reasons that explain the central role of the output gap to the monetary policy: the first is knowing if the policy adopted by the central bank leads to the full employment level. The second is the inflation process dependence on the output gap estimate, because when the output is above its potential, the prices level tends to rise, in response to an excessively high demand, which forces the business and labor market work beyond their maximum efficiency level, to meet the demand level. Alternatively, a negative output gap indicates a lack of demand for goods and services in the economy, so inflation tends to fall. Therefore, output gap estimates are necessary not only to know if the predicted output path by the monetary policy will lead inflation to a stable level, but also if the current monetary policy is efficient.

This paper in an attempt to estimate the Brazilian output gap considering the possible changes in the parameters of the economy that occurred due to the conduct of macroeconomic policies over the period 2000 to 2019. For this, we use the work developed by Oliveira (2013) and take it a step further. In addition to expanding the sample of that work, we adapted the model to a Markov Switching DSGE framework (MS-DSGE), to estimate the output gap and its policy parameter in different regimes. As DSGE models estimation is based on the hypothesis that parameters are invariant to changes in policies and shocks, that is, the parameters are structural in the sense of Lucas’s critique, and, motivated by the hypothesis that the 2014-2016 fiscal crisis may have altered the relationship between monetary policy and the idleness of the economy, portrayed by the output gap, the use of an MS-DSGE model converges with this work proposal, since this modeling allows parameters to variate. Another contribution of this study is to enrich the research agenda that aims to represent the brazilian economy in a MS-DSGE approach, such as Gonçalves, Portugal e Aragón (2016), Paranhos e Portugal (2017) and Teixeira (2019).

We incorporate MS elements in a fully specified New Keynesian DSGE model, presented by Hirose, Naganuma et al. (2007), through four different approaches: (i) shifts in stochastic volatilities only, (ii) shifts in Taylor rule policy parameters only, (iii) shifts in both of them, but in the same Markov chain, and, finally, (iv) shifts in both of them, but with the stochastic volatilities following an independent chain, as well as the Taylor rule policy parameters. When we consider shifts in stochastic volatilities, we subject only those related to technology and preference processes, since the flexible-price equilibrium output depends on productivity and demand shocks only.

The model that best captures the recessive moments experienced by the Brazilian economy in the period analyzed by this work is that which allows regime changes only in the parameters of the monetary policy rule (which we refer to as Model 2). The output gap resulting from this estimation interprets the output gap’s behavior in a less volatile way than the other proposed models, with well-demarcated periods of recession when compared with the others. In addition, the Model 2 output gap series has a good correlation with the publicly available series for Brazil, which use the production function approach, and the series derived from the HP filter estimation. Also, the comparison with these series demonstrates the contributory potential of this work to the debate of the output gap level in Brazil. In addition to the analytical comparison, we performed a quantitative comparison of the output gap series, through forecasting tests in the framework of a Central Bank reaction function, to verify which gap is the most adherent to the observed interest rates, and also through a Phillips Curve, to measure the inflationary pressure of the output gap on free prices. The
results from the first exercise are favorable to the MS-DSGE approach for long-term forecasts, while for the short term, the results are more adherent to the series derived from the HP Filter. On the other hand, the exercise of forecasting the free items inflation through a Phillips Curve does not present results in favor of one series over another, looking at the general picture, so that for each horizon considered, one series stands out marginally from the others.

Aside from this introduction, this paper is organized as follows. Section 2 presents a brief literature and method review. Section 3 presents and details the MS-DSGE model structure considered to perform the output gap estimation. Section 4 presents the estimation results, as well as the output gap series comparison. Section 5 performs prediction tests, in order to better evaluate and compare the series, and section 7 concludes.

2 Literature Review: MS-DSGE

As highlighted by Herbst e Schorfheide (2015), Markov-Switching processes can also be incorporated into the DSGE models, forming the MS-DSGE models. In their most practical use, such processes can replace the technological growth rate with a two-state Markov process. The non-linearity of Markov-Switching, still according to Herbst e Schorfheide (2015), can also be added in parameters that are not related to exogenous processes, such as the coefficients of monetary policy. Such modification of the DSGE models would correspond to the same characteristics of the output growth that Hamilton (1989) was able to trace.

One prominent work on the MS-DSGE approach is Liu e Mumtaz (2011), which portray a small open economy for United Kingdom (UK), with agents aware of the possibility of regime switching, in a way that this is considered by them in the time of forming their expectations. The authors consider five versions of the model: (i) no regime switching; (ii) two-state Markov switching in the volatility of the structural shocks; (iii) in addition to the previous one, it its allowed for the parameters of the domestic price inflation Phillips curve to follow an independent two-state Markov process; (iv) regime switching in the import price inflation Phillips curve; (v) regime switching in the open economy Taylor rule; and, finally, (vi) two regimes for all structural parameters in the model, but assumes that agents do not form expectations about the possibility of regime switching. All models that incorporated regime change were preferable to the model with fixed parameters.

In the same way, Chen e MacDonald (2012) also estimated an MS-DSGE model with different versions for the UK, but they went deeper. With the model which performed best, the authors used it to find an optimal monetary rule for the periods analysed, between 1975 and 2010. Their objective was assess how effective were the monetary policy decisions for the economic dynamics. The results point out that the effective monetary policy contributed, at least in part, for the Great Moderation period in UK. The authors also find moments of non-optimal monetary stance in the period.

Gonçalves, Portugal e Aragón (2016) makes use of the work in Liu e Mumtaz (2011) to implement an similar approach for the Brazilian case, during the period from 1996 until 2012. The authors assess if the adoption of regime switching parameters would represent better the Brazilian economic dynamics. In order to perform that, the authors consider three instead of five versions of regime switching open-economy DSGE model: (i) regime switching in the volatility of exogenous shocks; (ii) in addition to the latter, regime switching in the parameters of the domestic price inflation Phillips curve; and (iii) regime shifts in the volatility of the exogenous shocks and in the parameters of the open economy Taylor rule. In the same way as the original work, Gonçalves, Portugal e Aragón (2016) show that the Markov switching versions were superior than the one with constant parameters.

Following the international literature, Paranhos e Portugal (2017) is based on the model of Chen e MacDonald (2012). The authors consider regime changes in four different versions: (i) regime switching in Taylor rule parameters only; (ii) shifts in the price stickiness parameter only; (iii) regime changes in stochastic volatilities only; and (iv) a two independent Markov switching process with one specification allowing shifts in the Taylor rule and price stickiness and another one with shifts in stochastic volatilities. But, in an opposite way, the best performing model was the one with no regime changes, which was used as benchmark. However, the authors were able to identify a clear change in the monetary policy stance in 2003, moving from low inflation targeting regime to a high one. This leads them to not reject the hypothesis of regime changes during the analysed period, 2000 until 2016Q3, even though the model comparison results
indicate that regime changes were not supported by the data.

The most recent MS-DSGE work for Brazil is found in Teixeira (2019). The author departs from one of the models presented in Galí (2015) textbook, with a fiscal block, and add a Markov-Switching structure to incorporate the possibility of the economy goes from monetary to fiscal dominance, and vice-versa. The model is calibrated, considering DSGE models for the brazilian economy, so only the regime change probabilities are estimated. The work tries to explore the implications of the Fiscal Theory of The Price Level when the economy in under monetary dominance, but households and firms believe there is a chance of switching to fiscal dominance. With this proposal, the author finds that there is a positive probability of 5% of switching to fiscal dominance in Brazil, using data from 2004 until 2018. Also, when this probability is taken into account, there is a significant change in the shocks dynamics, with the monetary policy becoming weaker.

Motivated by the works discussed above, we incorporate Markov-Switching elements in a DSGE model in the next section, in an attempt to obtain a better estimate for the output gap. Among the advantages of using DSGE models to find an estimate of the output gap, the main one is the deeper structural interpretation that this approach allows, which is essential in the perspective of welfare sought by the policy maker. According to Álvarez e Gómez-Loscos (2018), the joint estimation of potential output and structural shocks in a general equilibrium model allows for a quantitative assessment of inflationary pressures and a more normative analysis of alternative monetary policy measures. The multiple versions of the model described there are of interest because they can better represent the structural changes that occurred in the Brazilian economy in the analyzed period, such as changes in the conduct of monetary policy, especially in transition periods of the presidency of the BCB, as well as a period of political uncertainty, such as the election of ex-president Lula or the impeachment process of ex-president Dilma. Presumably, parameters like the monetary policy rule or the volatility shocks on the Brazilian economy were not constant over the period considered. So, the adoption of the MS-DSGE methodology help us investigate whether and how these structural changes impacted our potential output and, consequently, the path of the output gap.

3 The MS-DSGE Model

In this section, we present the model used and how we intend to add the Markov-Switching structure in it. The model is the same as Hirose, Naganuma et al. (2007) and Oliveira (2013).

3.1 The Model

The Representative Household

The representative household, who lives infinitely and has a multiplicative consumption habit, maximizes the following expected utility function:

$$E_t \sum_{i=0}^{\infty} \beta^i D_{t+i} \left[\frac{1}{1-\tau} \left(\frac{C_{t+i+1}}{C_{t+i}^h} \right) \right]^{1-\tau} + \frac{\mu}{1-b} \left(\frac{M_{t+i}}{P_{t+i}} \right)^{1-b} - \frac{\chi N_t^{1+\eta}}{1+\eta}$$

where D_t is a preference shock that is interpreted as a real demand or IS shock, C_t is the consumption good, C_{t+i-1}^h represents a habit stock consumption with the habit persistence parameter given by $0 < h < 1$, M_t are the real money balances, $1 - N_t$ is leisure, $0 < \beta < 1$ is the discount factor, τ^{-1} is the intertemporal substitution elasticity, $b > 0$ and $\eta > 0$ are associated with the substitution elasticities with respect to consumption and leisure, and $\mu > 0$ and $\chi > 0$ are scale factors.

Given the aggregate price index, the budget constraint is:

$$C_t + \frac{M_t}{P_t} + B_t = \left(\frac{W_t}{P_t} \right) N_t + \frac{M_{t-1}}{P_{t-1}} + R_{t-1} \left(\frac{B_{t-1}}{P_{t-1}} \right) + \Pi_t,$$

where B_t is nominal government bonds that pay the nominal interest rate R_t, $\frac{W_t}{P_t}$ is the real wage, and Π_t is the real profits received from firms, since the household owns these.
The first-order conditions for the household’s optimization problem are:

\[
\frac{U^*_C, t}{C_t} = \beta R_t E_t \left(\frac{U^*_C, t+1}{C_{t+1}} \frac{P_t}{P_{t+1}} \right) \tag{1}
\]

\[
D_t \mu \left(\frac{M^t}{P_t} \right)^{-b} = \frac{R_t - 1}{R_t} \tag{2}
\]

\[
\frac{D_t \chi N^t}{U^*_C, t} = \frac{W_t}{P_t} \tag{3}
\]

where

\[
U^*_C, t = D_t \left(\frac{C_t}{C_{t-1}} \right)^{1-\tau} - \beta h E_t \left[D_{t+1} \left(\frac{C_{t+1}}{C_t} \right)^{1-\tau} \right]. \tag{4}
\]

A log-linear approximation of equations (1) and (4) around the steady state, together with the equilibrium condition of market clearing \(C_t = Y_t \) results in the Euler equation:

\[
u^*_c, t - y_t = E_t u^*_{c, t+1} - E_t y_{t+1} + r_t - E_t \pi_{t+1}, \tag{5}\]

with

\[
u^*_c, t = \left(\frac{1}{1-\tau} \right) \left(1 + \beta h^2 \right) y_t - \beta h E_t y_{t+1} + \frac{1}{1-\beta h} d_t - \frac{\beta h}{1-\beta h} E_t d_{t+1} \tag{6}\]

where the lower case letters with time subscriptions represent the percentage deviations from their steady state values. In addition, approximating (3), we arrive at:

\[d_t + \eta n_t - u^*_c, t + c_t = w_t - p_t. \tag{7}\]

Firms

The final consumption good \(Y_t \) is produced from inputs that are considered intermediate goods, \(Y_t(j) \), \(j \in [0, 1] \) produced by firms in monopolistic competition with the following technology:

\[Y_t = \int_0^1 Y_t(j) \frac{\lambda_t}{\lambda_t} \frac{\lambda_t}{\lambda_t-1} dj, \tag{8}\]

where \(\lambda_t \) is the time-varying elasticity of demand for each intermediate asset. The cost minimization problem of the final good sector provides the demand function for each \(j \) good:

\[Y_t(j) = \left(\frac{P_t(j)}{P_t} \right)^{-\lambda_t} Y_t, \tag{8}\]

and the aggregate price index:

\[P_t = \left[\int_0^1 P_t(j)^{1-\lambda_t} dj \right]^{\frac{1}{\lambda_t}}. \tag{9}\]

Each firm faces a downward-sloping demand curve as in (8) for its differentiated product \(Y_t(j) \). The production function is linear in the labor input \(N_t(j) \):

\[Y_t(j) = A_t N_t(j) \tag{10}\]

where \(A_t \) is an exogenous productivity disturbance.

Subject to the production function given by (10), the cost minimization problem of each firm is:

\[
\min_{N_t} \frac{W_t}{P_t} N_t + \Phi_t(Y_t(j) - A_t N_t(j)),
\]

where \(\Phi_t \) is the firm’s real marginal cost. The first-order indicates that:

\[\Phi_t = \frac{W_t}{P_t} A_t. \tag{11}\]
According to Calvo (1983), it is assumed that firms can change their price in a given period according to probability \(1 - \omega \). Each firm chooses the price \(P_t(j) \) to maximize the expected discounted profits:

\[
E_t \sum_{i=0}^{\infty} \omega^i Q_{t,i+1} \left[\left(\frac{P_t(j)}{P_{i+1}} \right) Y_{t+i}(j) - \Phi_{t+i} Y_{t+i}(j) \right],
\]

where \(Q_{t,i+1} = \beta^i \frac{U_{C,t+i}/C_{t+i}}{U_{C,t}/C_t} \) is the stochastic discount factor. Subject to the demand curve (8) with the market-clearing condition \(C_t = Y_t \), the first order condition for each firm implies that the optimal price \(P_{i+1}^* \) chosen by all firms adjusting at time \(t \) is:

\[
\frac{P_t^*}{P_t} = Z_t \frac{E_t \sum_{i=0}^{\infty} \omega^i Q_{t,i+1} Y_{t+i} \Phi_{t+i} \left(\frac{P_{i+1}}{P_t} \right)^{\lambda_t}}{E_t \sum_{i=0}^{\infty} \omega^i Q_{t,i+1} Y_{t+i} \left(\frac{P_{i+1}}{P_t} \right)^{\lambda_t-1}}
\]

where \(Z_t = \frac{\lambda_t}{\lambda_t - 1} \) expresses the time-varying markup. From (9), the aggregate price is:

\[
P_t = [\omega P_{t-1}^{1-\lambda_t} + (1 - \omega) P_t^{1-\lambda_t}]^{1-\lambda_t}.
\]

A linear approximation around the steady state of \(P_t \) and \(P_t^* \) takes us to the New Keynesian Phillips Curve (NKPC):

\[
\pi_t = \beta E_t \pi_{t+1} + \frac{(1 - \beta \omega)(1 - \omega)}{\omega} \varphi_t + \frac{1 - \omega}{\omega} (z_t - \beta \omega E_t z_{t+1}),
\]

where \(\pi_t \) denotes the inflation rate, \(\varphi_t = w_t - p_t - a_t \) is the real marginal cost and \(z_t \) the time-varying markup, interpreted as a cost-push shock to the firms’ price setting. As defined earlier, lower-case letters with time subscripts represent the percentage deviations from their steady-state values.

Flexible-Price Equilibrium and the Output Gap

The model proposed by Hirose and Naganuma (2007) considers that the output gap is defined as the deviation of the current output from its flexible-prices equilibrium output, which would occur in the absence of cost shocks. In addition, an optimal monetary policy, as pointed out by Woodford (2011), reproduces the output gap of cost shocks. In addition, an optimal monetary policy, as pointed out by Woodford (2011), reproduces the output gap of cost shocks. In other words, the concept of output gap that is considered here, it is a good measure of well-being for policy makers.

Disregarding cost-push shocks for a moment, imagine the case where all firms adjust their prices in every period, that is, consider that there is no more price rigidity. Such a flexible pricing scenario is characterized when \(\omega = 0 \), \(P_t^* = P_t \) and \(Z_t = Z \) in (12). So, the definition of marginal cost in (11) implies that:

\[
\frac{W_t}{P_t} = \frac{A_t}{Z}.
\]

This relationship, together with the first order condition (3), indicates that the flexible-price equilibrium satisfies:

\[
\frac{D_t \lambda N_t^0}{U_{C,t}/C_t} = \frac{A_t}{Z}.
\]

A log-linear approximation around the steady state yields:

\[
d_t + \eta n_t^f - u_{c,t}^f + c_t^f = a_t
\]

where the superscript \(f \) refers to the flexible-price equilibrium. Similarly, the production function (10) can be linearized as:

\[
y_t^f = n_t^f + a_t.
\]

From (14) and (15), together with the equilibrium condition \(y_t^f = c_t^f \), the flexible-price equilibrium output \(y_t^f \) can be written as:

\[
y_t^f = a_t + \frac{1}{1 + \eta} u_{c,t}^f - \frac{1}{1 + \eta} d_t,
\]
wherein

\[\varepsilon = \left(1 + \beta h^2\right) y^f_t - hy^f_{t-1} - \beta h E_t y^f_{t+1} + \frac{1}{1 - \beta h} d_t - \frac{\beta h}{1 - \beta h} E_t d_{t+1}. \] (17)

Hence, the flexible-price equilibrium output depends on productivity and demand shocks. Finally, we can now define the output gap as:

\[\text{gap}_t = y_t - y^f_t, \]

which measures the percentage deviation of the actual output from the flexible-price equilibrium output.

Monetary Policy

The monetary policy follows a standard Taylor-type rule. As is known, this rule dictates the monetary authority behavior when adjusting the nominal interest rate according to movements in inflation and the output gap of its respective targets. The log-linearized version of the monetary policy rule is:

\[r_t = \rho_r r_{t-1} + (1 - \rho_r) \left[\psi_\pi \pi_t + \psi_y (y_t - y^f_t) \right] + \varepsilon_{r,t}, \] (18)

where \(\varepsilon_{r,t} \sim N(0, \sigma^2_r) \) captures unanticipated deviations and \(0 \leq \rho_r < 1 \) determines the degree of interest rate smoothing. \(\psi_\pi > 0, \psi_y > 0 \) and \(\varepsilon_{r,t} \) is an exogenous monetary shock.

Exogenous Shock Processes and Equilibrium System

We assume that the demand shock \(d_t \), the cost shock \(z_t \) and the productivity shock \(a_t \) follow a stationary AR (1) process, as the source of the equilibrium dynamics:

\[d_t = \rho_d d_{t-1} + \varepsilon_{d,t}, \] (19)
\[z_t = \rho_z z_{t-1} + \varepsilon_{z,t}, \] (20)
\[a_t = \rho_a a_{t-1} + \varepsilon_{a,t}, \] (21)

wherein \(0 \leq \rho_d, \rho_z, \rho_a < 1 \) and \(\varepsilon_{d,t} \sim N(0, \sigma^2_d) \). Similarly, \(\varepsilon_{z,t} \sim N(0, \sigma^2_z) \) and \(\varepsilon_{a,t} \sim N(0, \sigma^2_a) \).

3.2 Regime-Switching Exogenous Process

We will work with two possible regimes, each associated with a determined behavior of our regime-dependent parameters. In our proposal, the economy can move between regimes according to an exogenous stochastic first-order Markov-Chain. Consider that \(p_{ij} = Prob(s_{t+1} = i | s_t = j) \) where \(i, j \in E, R \) and \(E \) stands for Expansion while \(R \) stands for Recession. In other words and in a simple scenario, when the output gap is positive and when it is negative. So, the exogenous Markov-Chain’s transition matrix can be defined as:

\[P = \begin{bmatrix} \pi_{EE} & 1 - \pi_{EE} \\ 1 - \pi_{RR} & \pi_{RR} \end{bmatrix} \] (22)

Regime-dependent parameters are considered in the model by subjecting them to regime change according to the Markov-Chain process described above, with two possible states. In particular, we evaluate four versions of the model described above that allow for (i) regime shifts in the volatility of the exogenous shocks that impact the output gap, namely, the demand and productivity shocks (\(\sigma_d \) and \(\sigma_a \)), (ii) regime shifts in the Taylor rule parameters (\(\psi_\pi \) and \(\psi_y \)), (iii) regime shifts in both volatilities and monetary policy parameters (\(\sigma_d, \sigma_a, \psi_\pi, \psi_y \)), all following the same Markov-Chain, and finally, (iv) the same as the previous one, but with the volatility of the exogenous shocks following one chain and the monetary policy rule parameters following a different one (independent chains). This regime-switching structure brings the idea that economic agents know that such transitions can occur and take this in to account when making their decisions.

We are aware that adopting an exogenous Markov process is a limitation of the work, since the ideal would be to consider that the monetary authority can optimally choose which rule to follow according to the current state of the economy, as the proposal in Paranhos e Portugal (2017). However, we believe that the methodology adopted here can contribute to the estimation of the output gap in the Brazilian economy.
literature, especially if one wishes to analyze any asymmetry in monetary policy or the main shocks that this unobservable variable is subject to. In addition, this proposal contributes to the MS-DSGE literature for the Brazilian case.

Another approach, which we follow, considers switching parameters in a perturbation method situation, allowing for higher-order approximations and, thus, improving the accuracy of the solution. Examples in this field include Foerster et al. (2014) and Maih (2015). As the latter also provides a Matlab toolbox called RISE1 to adopt the solution method presented in the article, for convenience, we follow its methodology.

4 Estimation and Results

Data

To perform the estimation, quarterly data collected from the BCB and the Brazilian Institute of Geography and Statistics (IBGE) were used. The period ranges from 2000Q1 to 2019Q4. The data consists of the following variables:

- **GDP**: quarterly GDP per capita growth. For the GDP series, the seasonally adjusted series with chained values at 1995 prices was used, available at IBGE. For the labor force, a linked series was created combining data from the economically active population (PEA) obtained through the PME/IBGE until 2011, with the labor force series available by PNADC/IBGE. So, the series is the log difference of the GDP per capita scaled by 100.

- **Inflation**: the inflation rate is given by the log difference of the consumer price index IPCA scaled by 400. The IPCA series is seasonally adjusted using the X13 filter.

- **Interest Rate**: the annualized Selic interest rate, available at BCB.2

The measurement equation which relates the series presented above with the model is:

$$
\begin{bmatrix}
\Delta GDP_t \\
INF_t \\
INT_t
\end{bmatrix}
=
\begin{bmatrix}
\gamma^* + \Delta y_t \\
\pi^* + 4\pi_t \\
r^* + \pi^* + 4r_t
\end{bmatrix}
$$

(23)

The parameters γ^*, π^* and r^* are the steady state values of output growth, inflation and interest rates, respectively, and they are estimated with the other model parameters, according to the methodology presented below.

Following the DSGE estimation literature, the Bayesian approach is used to estimate the proposed model. As is known, the methodology consists in assuming a prior distribution about the parameters to be estimated and then updates them using the likelihood function. This step yields to the posterior distribution, which is simulated by a Markov-Chain Monte Carlo (MCMC) algorithm. We performed 200,000 iterations of the MCMC algorithm with 25% of those being discarded in the burn-in period and with one chain. At last, the posterior distribution is used by the Metropolis-Hasting algorithm for posterior simulation. The acceptance rate was 30%.

But in a switching-parameter case like the MS-DSGE, the calculation of the likelihood function is dependent on the past of the regimes. For this reason, the Kalman filter can not be directly applied, since the number of possible likelihoods grows exponentially with the sample size. So, to find the likelihood function, we rely on Kim’s filter (Kim, Nelson et al. (1999)).

Priors

The prior distributions was determined based on evidences from national and international literature. Description (1) refers to the prior adopted in regime 1, and similarly, distinction (2) in regime 2. The priors

1 RISE is a Matlab-based object-oriented toolbox. It is available, free of charge, in this link
2 Number series 4189
Table 1 – Priors, means and 90% Credibility Intervals

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Prior</th>
<th>Density</th>
<th>Domain</th>
<th>Mean</th>
<th>Std. Dev</th>
<th>Mean</th>
<th>5%</th>
<th>95%</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\tau)</td>
<td>Gamma</td>
<td>(R^+)</td>
<td>1.86</td>
<td>0.15</td>
<td>1.8174</td>
<td>1.5814</td>
<td>2.0697</td>
<td></td>
</tr>
<tr>
<td>(h)</td>
<td>Beta</td>
<td>[0,1]</td>
<td>0.50</td>
<td>0.10</td>
<td>0.5303</td>
<td>0.3294</td>
<td>0.7276</td>
<td></td>
</tr>
<tr>
<td>(\omega)</td>
<td>Beta</td>
<td>[0,1]</td>
<td>0.66</td>
<td>0.05</td>
<td>0.7297</td>
<td>0.6755</td>
<td>0.7781</td>
<td></td>
</tr>
<tr>
<td>(r^*)</td>
<td>Gamma</td>
<td>(R^+)</td>
<td>4.42</td>
<td>1.00</td>
<td>5.2499</td>
<td>4.1864</td>
<td>6.3286</td>
<td></td>
</tr>
<tr>
<td>(\eta)</td>
<td>Gamma</td>
<td>(R^+)</td>
<td>1.64</td>
<td>0.25</td>
<td>1.5879</td>
<td>1.2735</td>
<td>1.9557</td>
<td></td>
</tr>
<tr>
<td>(\psi_{\pi}(1))</td>
<td>Gamma</td>
<td>(R^+)</td>
<td>1.43</td>
<td>0.10</td>
<td>1.5355</td>
<td>1.3511</td>
<td>1.7439</td>
<td></td>
</tr>
<tr>
<td>(\psi_{\pi}(2))</td>
<td>Gamma</td>
<td>(R^+)</td>
<td>0.53</td>
<td>0.10</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>(\psi_{\psi}(1))</td>
<td>Gamma</td>
<td>(R^+)</td>
<td>0.28</td>
<td>0.05</td>
<td>0.3276</td>
<td>0.2237</td>
<td>0.4407</td>
<td></td>
</tr>
<tr>
<td>(\psi_{\psi}(2))</td>
<td>Gamma</td>
<td>(R^+)</td>
<td>0.48</td>
<td>0.10</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>(\rho_r)</td>
<td>Beta</td>
<td>[0,1]</td>
<td>0.80</td>
<td>0.10</td>
<td>0.8571</td>
<td>0.8331</td>
<td>0.8788</td>
<td></td>
</tr>
<tr>
<td>(\rho_d)</td>
<td>Beta</td>
<td>[0,1]</td>
<td>0.50</td>
<td>0.15</td>
<td>0.7767</td>
<td>0.6666</td>
<td>0.8609</td>
<td></td>
</tr>
<tr>
<td>(\rho_z)</td>
<td>Beta</td>
<td>[0,1]</td>
<td>0.50</td>
<td>0.15</td>
<td>0.5199</td>
<td>0.2745</td>
<td>0.7542</td>
<td></td>
</tr>
<tr>
<td>(\rho_a)</td>
<td>Beta</td>
<td>[0,1]</td>
<td>0.50</td>
<td>0.15</td>
<td>0.9153</td>
<td>0.8572</td>
<td>0.9592</td>
<td></td>
</tr>
<tr>
<td>(\gamma^*)</td>
<td>Normal</td>
<td>(R^+)</td>
<td>0.11</td>
<td>0.05</td>
<td>0.0738</td>
<td>0.0103</td>
<td>0.1379</td>
<td></td>
</tr>
<tr>
<td>(\pi^*)</td>
<td>Gamma</td>
<td>(R^+)</td>
<td>6.00</td>
<td>2.00</td>
<td>6.1685</td>
<td>4.8005</td>
<td>7.5014</td>
<td></td>
</tr>
<tr>
<td>(\sigma_r)</td>
<td>Weibull</td>
<td>(R^+)</td>
<td>0.45</td>
<td>0.30</td>
<td>0.2522</td>
<td>0.2168</td>
<td>0.2936</td>
<td></td>
</tr>
<tr>
<td>(\sigma_z)</td>
<td>Weibull</td>
<td>(R^+)</td>
<td>0.45</td>
<td>0.30</td>
<td>0.7100</td>
<td>0.0525</td>
<td>1.9106</td>
<td></td>
</tr>
<tr>
<td>(\sigma_d)</td>
<td>Weibull</td>
<td>(R^+)</td>
<td>0.45</td>
<td>0.30</td>
<td>3.0734</td>
<td>2.4253</td>
<td>3.7675</td>
<td></td>
</tr>
<tr>
<td>(\sigma_a)</td>
<td>Weibull</td>
<td>(R^+)</td>
<td>0.45</td>
<td>0.30</td>
<td>2.3557</td>
<td>1.8733</td>
<td>2.9475</td>
<td></td>
</tr>
</tbody>
</table>

for the Taylor rule parameters are in line with the posterior estimates for those parameters by Gonçalves, Portugal e Aragón (2016). The steady state interest rate prior mean was selected according to Paranhos e Portugal (2017), which in turn defines the discount factor, by the relation \(\beta = \left[\exp\left(\frac{r^*}{400}\right)\right]^{-1}\). For the parameters \(\gamma^*\) and \(\pi^*\), the priors were based on historical averages of the actual data. The shocks standard deviations followed the propose presented by Tao Zha in his tutorial RISE codes. We tried to adopt the conventional inverse gamma distribution, but the results were better with this proposal. For the remaining parameters, the work of Hirose, Naganuma et al. (2007) and Oliveira (2013) were followed, with the exception of the degree of interest rate smoothing (\(\rho_r\)), for which the posterior average of the national literature was adopted. We also followed Paranhos e Portugal (2017) for the prior specification of the transition probabilities. Table 1 summarize the priors and presents the estimation results for the scenario with no regime changes, which we call Model 0.

Results

The Model 0 estimation results show us estimates in line with the values presented in the national literature. It can be observed that the steady state inflation rate (\(\pi^*\)) and the steady state real interest rate (\(r^*\)) were close to their historical averages. These values indicate a nominal interest rate of 11.42%, while our sample presents mean value of 12.34%. Regarding the \(\gamma^*\) parameter, the posterior estimate was below the historical mean, used as the prior, but respected the interval error band. According to the posterior estimates of the Taylor rule parameters, it appears that the BCB adopts an anti-inflationary stance, and it also take in consideration the output gap level, since its response coefficient was bigger that the prior. Also, the interest rate smoothing (\(\rho_r\)) estimate was in line with observed in the literature, showing that movements in monetary policy tend to be smooth, as expected. The \(\omega\) parameter, also known as the Calvo parameter, presented a mean value of 0.73, which indicates that firms change their prices approximately every three and a half quarter. It it worth mentioning that the productivity shock exhibited a persistence

3 The estimated value for \(\beta\) is 0.989, as presented by Castro et al. (2015).

4 They are available with the RISE toolbox installation.
greater than 0.90 and that the demand and productivity volatilities (σ_d and σ_a) were bigger than the others, which may indicate a greater share of their respective shocks.

In its turn, Table 2 summarizes the posterior estimates for the four MS-DSGE versions, which we call Model 1 to Model 4.

Model 1 allows changes only in standard deviations of the productivity and demand exogenous shocks. As shown in the table 2, greater volatilities characterize regime 2 and we point a little overlap across regimes in the confidence intervals. Also, the standard deviations almost double in regime 2. The model was able to capture the instability moments of the beginning of the decade, with the election of Lula, but does not capture other similar moments, like the 2008 financial crisis and the economic and political crisis in Brazil during the second term of President Dilma. We believe that this is due to our model representing a closed economy, so that it does not capture exchange rate movements. Besides that, the output gap series does not capture all the recessionary periods determined by CODACE5. The remaining parameters shows very similarity with Model 0.

The second model, which allows changes only in the Taylor rule parameters, indicates that in regime 2, the monetary authority follows a low inflation targeting regime, with more participation of the output gap level. This can be observed by the difference of the inflation response coefficient between the regimes (from 1.46 to 0.54), as the opposite occurs with the output gap response coefficient (from 0.30 to 0.63). Also, the transition probabilities at the bottom of Table 2 was in line with the prior. The filtered and smoothed probabilities of regime 2, characterized as a low inflation targeting regime, practically does not occur with this model configuration. We expected the model to be able to capture moments of low inflation targeting, like Paranhos e Portugal (2017) does. It is valid to point that with other priors definitions, these moments appears, but the output gap series, in its turn, was not able to portray the economic cycles, especially the recessionary periods. This happened not only with this version model, but with the others too. In this sense, we prioritize the results that presented the best output gap series, even if the probabilities did not capture all the expected moments according to the structure of the model.

In Model 3, in which both volatilities and Taylor rule parameters can switch, but following the same Markov-Chain, regime 2 is characterized by greater volatility and low pursuit of the inflation target: σ_a is more than double and σ_d is quite double the values of Regime 1; also, the monetary policy parameters behave similarly to Model 2, with the inflation response coefficient going from 1.50 to 0.57, and the output gap response coefficient rising from 0.32 to 0.58. This behavior is also in line with the results found by Gonçalves, Portugal e Aragón (2016) and Paranhos e Portugal (2017). The filtered and smoothed probabilities are able to show some moments of instability, as the uncertainty regarding the macroeconomic policy of the early 2000s and the instability of the second government Dilma, but the output gap series does not carry the recession moments of the analyzed period.

Model 4, at last, permits regime changes in both volatilities and monetary policy parameters, but combining two independent Markov-Chains. The posterior results are very similar with the other models, in particular with Model 3, since the filtered and smoothed probabilities also captures some periods of shocks, but the second chain does not represents the moments of discretionary monetary policy. This explains why the output gap series of this version was more alike to the result presented by Oliveira (2013).

Output Gap

Our approach takes us to five different output gap series6. The gap resulting from Model 0 does not capture very well the recession periods, except for the period 2003Q1-2003Q2. The series presents a volatile behavior, including positive output gap and peaks in notably recessionary periods, as in the first and last ones considered by our sample. The output gap series from Models 1 and 3 also demonstrate the same pattern. By its turn, the gap of Model 4 was able to better capture the recessions of 2003 and 2008, in addition to presenting a much less volatile behavior than the others. The series was also the one that came closest to the result found by Oliveira (2013). However, it maintained the same pattern as the previous models in the

5 Economic Cycles Dating Committee/IBRE

6 The results are available upon request to the authors
Table 2 – Posterior means and 90% Error bands - Markov-Switching models

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Model 1</th>
<th>Model 2</th>
<th>Model 3</th>
<th>Model 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\tau)</td>
<td>1.7694</td>
<td>-</td>
<td>1.8264</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>(1.5419, 2.0086)</td>
<td>(1.6073, 2.0724)</td>
<td>(1.5337, 2.0005)</td>
<td>(1.5712, 2.0291)</td>
</tr>
<tr>
<td>(h)</td>
<td>0.5381</td>
<td>0.6350</td>
<td>0.6210</td>
<td>0.6852</td>
</tr>
<tr>
<td></td>
<td>(0.3060, 0.7671)</td>
<td>(0.4427, 0.8024)</td>
<td>(0.4202, 0.7987)</td>
<td>(0.4892, 0.8537)</td>
</tr>
<tr>
<td>(\omega)</td>
<td>0.7229</td>
<td>0.7829</td>
<td>0.7755</td>
<td>0.7873</td>
</tr>
<tr>
<td></td>
<td>(0.6525, 0.7846)</td>
<td>(0.7343, 0.8270)</td>
<td>(0.7312, 0.8148)</td>
<td>(0.7397, 0.8320)</td>
</tr>
<tr>
<td>(r^*)</td>
<td>4.9420</td>
<td>5.1983</td>
<td>4.9411</td>
<td>4.7547</td>
</tr>
<tr>
<td></td>
<td>(3.7912, 6.1460)</td>
<td>(4.0156, 6.3974)</td>
<td>(3.7587, 6.1240)</td>
<td>(3.6121, 5.9287)</td>
</tr>
<tr>
<td>(\eta)</td>
<td>1.5791</td>
<td>1.5747</td>
<td>1.5432</td>
<td>1.5352</td>
</tr>
<tr>
<td></td>
<td>(1.2531, 1.9312)</td>
<td>(1.2272, 1.8934)</td>
<td>(1.2185, 1.8841)</td>
<td>(1.2408, 1.9067)</td>
</tr>
<tr>
<td>(\psi)</td>
<td>1.5597</td>
<td>1.4600</td>
<td>0.5449</td>
<td>0.5710</td>
</tr>
<tr>
<td></td>
<td>(1.3600, 1.7654)</td>
<td>(1.2629, 1.6709)</td>
<td>(1.2019, 1.7133)</td>
<td>(1.0870, 1.8053)</td>
</tr>
<tr>
<td>(\rho_c)</td>
<td>0.8564</td>
<td>0.8535</td>
<td>0.8559</td>
<td>0.8565</td>
</tr>
<tr>
<td></td>
<td>(0.8306, 0.8792)</td>
<td>(0.8292, 0.8756)</td>
<td>(0.8330, 0.8765)</td>
<td>(0.8311, 0.8786)</td>
</tr>
<tr>
<td>(\rho_d)</td>
<td>0.7852</td>
<td>0.7488</td>
<td>0.7583</td>
<td>0.6660</td>
</tr>
<tr>
<td></td>
<td>(0.6447, 0.8843)</td>
<td>(0.6343, 0.8141)</td>
<td>(0.6363, 0.8500)</td>
<td>(0.5756, 0.8360)</td>
</tr>
<tr>
<td>(\rho_s)</td>
<td>0.5013</td>
<td>0.4663</td>
<td>0.4825</td>
<td>0.4660</td>
</tr>
<tr>
<td></td>
<td>(0.2522, 0.7501)</td>
<td>(0.2416, 0.6759)</td>
<td>(0.2434, 0.7343)</td>
<td>(0.2371, 0.7126)</td>
</tr>
<tr>
<td>(\rho_a)</td>
<td>0.9720</td>
<td>0.8566</td>
<td>0.8816</td>
<td>0.8598</td>
</tr>
<tr>
<td></td>
<td>(0.8569, 0.9737)</td>
<td>(0.7941, 0.9226)</td>
<td>(0.8160, 0.9418)</td>
<td>(0.7937, 0.9231)</td>
</tr>
<tr>
<td>(\gamma_\ast)</td>
<td>0.0994</td>
<td>0.0973</td>
<td>0.0836</td>
<td>0.0842</td>
</tr>
<tr>
<td></td>
<td>(0.0034, 0.1345)</td>
<td>(0.0372, 0.1576)</td>
<td>(0.0223, 0.1459)</td>
<td>(0.0240, 0.1437)</td>
</tr>
<tr>
<td>(\pi_\ast)</td>
<td>5.8611</td>
<td>5.3519</td>
<td>5.3586</td>
<td>5.3519</td>
</tr>
<tr>
<td></td>
<td>(4.4353, 7.2518)</td>
<td>(5.1303, 6.9568)</td>
<td>(4.6561, 6.9779)</td>
<td>(4.7235, 6.9136)</td>
</tr>
<tr>
<td>(\sigma_\ast)</td>
<td>0.2557</td>
<td>0.2154</td>
<td>0.2431</td>
<td>0.2410</td>
</tr>
<tr>
<td></td>
<td>(0.2187, 0.2906)</td>
<td>(0.1506, 0.2689)</td>
<td>(0.1904, 0.2891)</td>
<td>(0.1351, 0.2675)</td>
</tr>
<tr>
<td>(\sigma_z)</td>
<td>0.5226</td>
<td>0.5256</td>
<td>0.5267</td>
<td>0.5267</td>
</tr>
<tr>
<td></td>
<td>(0.0444, 1.4850)</td>
<td>(0.0972, 3.2114)</td>
<td>(0.0564, 2.3384)</td>
<td>(0.0863, 3.1802)</td>
</tr>
<tr>
<td>(\sigma_a)</td>
<td>8.7797</td>
<td>3.6543</td>
<td>3.8283</td>
<td>3.9927</td>
</tr>
<tr>
<td></td>
<td>(1.0662, 2.5570)</td>
<td>(2.1061, 6.0236)</td>
<td>(2.5633, 2.4747)</td>
<td>(2.5633, 2.4747)</td>
</tr>
<tr>
<td>(\phi_{12})</td>
<td>0.0727</td>
<td>0.0969</td>
<td>0.0708</td>
<td>0.0712</td>
</tr>
<tr>
<td></td>
<td>(0.0231, 0.1534)</td>
<td>(0.0301, 0.1978)</td>
<td>(0.0245, 0.1446)</td>
<td>(0.0250, 0.1476)</td>
</tr>
<tr>
<td>(\phi_{21})</td>
<td>0.1124</td>
<td>0.0893</td>
<td>0.1195</td>
<td>0.1036</td>
</tr>
<tr>
<td></td>
<td>(0.0340, 0.2130)</td>
<td>(0.0231, 0.1953)</td>
<td>(0.0306, 0.2181)</td>
<td>(0.0259, 0.2057)</td>
</tr>
<tr>
<td>(\phi_{12})</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>(0.0290, 0.1929)</td>
<td>(0.0290, 0.1929)</td>
<td>(0.0290, 0.1929)</td>
<td>(0.0290, 0.1929)</td>
</tr>
<tr>
<td>(\phi_{21})</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>(0.0274, 0.1897)</td>
<td>(0.0274, 0.1897)</td>
<td>(0.0274, 0.1897)</td>
<td>(0.0274, 0.1897)</td>
</tr>
</tbody>
</table>
2001Q1-2001Q4 and 2014Q2-2016Q4 recessions, even showing an expansion trend in the former and peaks in the latter.

![Figure 1 – Smoothed output gap series in each regime - Model 2](image)

The best output gap series found by the models consider here was Model 2. In Figure 1 is possible to notice the difference between the output gap series under each regime, while the gray bars represent the recessive periods dated by CODACE. As an illustration, if the BCB followed a low inflation targeting monetary policy, the 2003 recession could have been more intense, in terms of the drop, and the 2008 financial crisis could have taken us to a lower level of output, as represented by Regime 2. But, as the filtered and smoothed probabilities\(^7\) were unable to capture periods of low inflation targeting regime or discretionary monetary policy, as in 2003 and 2015, the output gap weighted by the smoothed probabilities was very similar with the Regime 1 series, as shown in Figure 2 below. The Model 2 output gap series represents very well all the recessions periods dated by the CODACE and the series also demonstrates the size of the last recession, both in duration and in level, as discussed in the work of Pires, Borges e Borça Jr (2019).

In comparison with other works that also use the DSGE approach, like Justiniano e Primiceri (2008), Hirose, Naganuma et al. (2007) and Oliveira (2013), the latter two using the same model as this work, our output gap series proved to be less volatile than the others, especially when compared to Oliveira (2013) series, since both portray the Brazilian economy, although our work uses a larger sample period. Oliveira (2013)’s results consider not only the recession periods dated by CODACE, but also the NBER definition of recession, as the period between the peak and the valley. The first difference that can be noticed in the comparison with this work is the 2003Q1-2003Q2 recession: while our results show that the output gap was already in negative territory in the period (like the other series presented here), Oliveira’s results start from the positive to negative terrain, in a movement very similar to that observed in versions 1, 3 and 4 of our model. Our interpretation is that this result is highly contaminated by the inflationary shock of the period. In the second recessive period considered by the author, 2008Q4-2009Q1, the same movement occurs, starting from a positive peak to a negative one. Our results, on the other hand, also capture the recession, but to a much lesser extent: in the valley, our output gap is -0.2%, while the result presented by the author is around -1.3%. Finally, at the end of the sample used by the author, he points to a recessive period not considered by CODACE, which would go from 2010Q4-2012Q3 (end of his sample). However, our results do not capture this occurrence, being more adherent to the Committee.

Using the advantages of estimating the output gap through a DSGE approach, as demonstrated by Christiano, Eichenbaum e Trabandt (2018), we can interpret the series’ behavior through the contribution of

\(^7\) The results are available upon request to the authors, since our focus is on the output gap series, and not on the period of occurrence of the regimes.
each shock. The same exercise was done by Oliveira (2013), in the output gap series, and Gonçalves, Portugal e Aragón (2016), in the output growth series. Figure 3 shows the output gap historical decomposition. Differently from what Oliveira (2013) concluded, this figure shows us that one of the main factors for the recession in the 2003Q1-2003Q2 period was the cost-push shock (σ_z), followed by the monetary shock (σ_r). In fact, in this period, the presidential dispute was taking place and the polls pointed to Luiz Inácio Lula da Silva, “Lula”, as the next president of Brazil. This scenario “led to an episode of current account reversal, with a large devaluation of the real exchange rate and a sharp increase in the interest rates of government debt securities, in both the domestic and external debt markets” (AYRES et al., 2019). Such events occurred because Lula, in the past, defended the renegotiation of internal and external debts, which, in the eyes of the financial markets, sounded like the possibility of default. For these reasons, the exchange rate depreciated rapidly, passing such shocks on to the price level, which, in turn, explains the cost-push shock to the firms’ price setting. Due to the scenario of uncertainty and inflationary shocks, the monetary authority began a cycle of monetary tightening, with impacts on the output gap being present until 2007Q3.

With the maintenance of macroeconomic stability during Lula’s first term, the country was able to turn its growth trajectory, a movement favored by the worldwide boom in commodity prices. As we can see in Figure 3, between 2004 and 2008, Brazil had the best economic outcomes. However, the financial crisis of 2008 stopped this climb. The crisis triggered the recession of 2008Q4-2010Q1, which was strongly caused, according to our model, due to the great negative demand shock, since the moment was of pure uncertainty. After that, the country was still able to ride the commodities’ wave, which can be seen in both positive cost-push and demand shocks. Since Brazil is a major exporter of commodities, the positive shock in prices was both a positive shock in costs and in demand, since the increase in commodity prices produced a positive wealth effect, due to the improvement in terms of trade. During this period, monetary shocks also contributed, especially between September 2011 and October 2012, in which the nominal interest rate went from 12.50 to 7.25.

However, here it is necessary to highlight how the government at that time faced the financial crisis. Lula was in his second term, but with a different macroeconomic policy than the first, with a strongly interventionist profile. And in its eagerness to shield the country from the damaging effects of the financial crisis, the government began to bet even more on these policies, on the idea that countercyclical policies could prevent the recession from being as damaging as it was showing for other countries, such as Portugal, Italy, Greece and Spain (PIGS). But all of these policies came with a price, and in 2012 the economy was already showing signs of exhaustion.

Due to countercyclical policies, the fiscal situation deteriorated, and the use of creative accounting...
made the situation even worse, since the drop in commodity prices no longer allowed the adjustment of public accounts to be on the revenue side. The government, through the control of administered prices, such as fuels and electricity sold by SOEs, started to try to keep inflation artificially low, even with the free prices of the economy increasing. Intervention in SOEs occurred precisely because the government did not want to register rising inflation, also because the monetary authority was pressured by the government to reduce the nominal interest rate in this context. Further, by instructing public banks to pay social security pensions and by the incomplete reimbursement of the full amount of these payments, the public banks had losses that should, in fact, be counted as government’s primary deficits. These fiscal maneuvers led to the impeachment of President Dilma Roussef in 2015 and the fiscal crisis of 2014Q2-2016Q4, from which the country has not yet recovered, as can be seen in Figure 2.

The historical decomposition of the period described above shows that, at first, the main force was the cost-push shock, as the uncertainty at the time caused both inflation and the nominal interest rate to increase dramatically: in December 2015, the variation in the price level registered 10.7% and the Selic, 14.25%. After that, the main force, which continues to prevail nowadays, was a negative and persistent shock of demand, since the economy has deteriorated so much that today we live with a high level of unemployment, higher rates of informality and a challenging scenario for the entrepreneur class.

The analysis is even more critical when we observe that at no point during the analyzed period, productivity played a relevant role in the trajectory of output gap. And, paradoxically, such a path seems to have been the only one left, because even if we consider the important sign of commitment to the fiscal adjustment embodied by the Spending Ceiling8 and the approval of the pension reform, the extremely rigid character of public accounts does not contribute for reversing this scenario.

Output Gap Analysis and Comparison

A good exercise is to compare the output gap found, which is based on the DSGE approach, with other available series, such as those from the IFI and IPEA, which are built using the production function approach, and the resulting output gap from an aggregate approach, such as the HP Filter.

8 The constitutional amendment Nº05/2016 establishes a spending ceiling on the federal budget, whose growth is limited to the inflation of the previous year.
Figure 4 – Output gap series comparison

Figure 4 shows us that the series are similar to each other (also demonstrated in table 3), and that all are capable of capturing dated recessions. However, our series is detached from the others in terms of level. At the beginning of the sample, the MS-DSGE output gap is already more negative than the others and the 2003Q1-2003Q2 recession is more intense. This is because our inflation series showed an outlier in the last quarter of 2002, due to the great uncertainty of the moment with the election results, which spilled over to expectations regarding the country’s macroeconomic stance. Due to the abrupt fall, the activity recovery of the MS-DSGE series between 2003Q3-2008Q3 is more accelerated than that presented by the other series, but all reached a similar level before the financial crisis.

On the other hand, in the 2008Q4-2009Q1 recession, the MS-DSGE output gap series expresses a much less intense impact than the others. Such divergences may lie in the fact that our model represents a closed economy, so that the exchange rate movements of the period are not considered, which could help to better describe such recessions.

Finally, the 2014Q2-2016Q4 recession is captured in a very similar way by all series. Our MS-DSGE series and the HP Filter series show a steeper fall than the others, despite the IFI series reaching a lower level. Still, another interesting observation is that the aggregated approach series shows a quick recovery, as if the output gap was already positive again. Less intensely, the IPEA production function approach series shows a tendency to close the gap, as does the IFI series, but at a much lower level. The MS-DSGE series, in turn, shows a much slower recovery than the others, with no clear sign of a reversal of the scenario.

Table 3 – Correlation Between Series

<table>
<thead>
<tr>
<th></th>
<th>MS-DSGE</th>
<th>IFI</th>
<th>IPEA</th>
<th>HP Filter</th>
</tr>
</thead>
<tbody>
<tr>
<td>MS-DSGE</td>
<td>1.00</td>
<td>0.5856</td>
<td>0.6938</td>
<td>0.5047</td>
</tr>
<tr>
<td>IFI</td>
<td>0.5856</td>
<td>1.00</td>
<td>0.8131</td>
<td>0.5658</td>
</tr>
<tr>
<td>IPEA</td>
<td>0.6938</td>
<td>0.8131</td>
<td>1.00</td>
<td>0.8893</td>
</tr>
<tr>
<td>HP Filter</td>
<td>0.5047</td>
<td>0.5658</td>
<td>0.8893</td>
<td>1.00</td>
</tr>
</tbody>
</table>
5 Prediction Tests

Although the graphical analysis of the series turns out to be a valid exercise, the best comparison is quantitative. In this sense, here it is proposed to carry out forecasting tests, similarly to Oliveira (2013). First, the central bank’s reaction function will be used to verify which gap estimate, among those presented in this work, is more adherent to the interest rate actually observed. This exercise does not seek to show which output gap series is better, but rather try to identify which of the estimates is more consistent with the BCB’s monetary policy decisions. In the next step, we will use the Phillips Curve to project the free items inflation, since the output gap can be a good measure of inflationary pressure, as Mishkin (2007) argues. The aim is to try to verify if the structural gap derived from the MS-DSGE model is a better predictor for future inflation, when compared to other approaches.

5.1 Central Bank’s Reaction Function

The reaction function used is:

\[i_t = \beta_1 i_{t-1} + (1 - \beta_1)(\beta_2 h_t + \beta_3 (E_t \pi_t - \pi^*_t)) + \varepsilon_t \tag{24} \]

where \(i_t \) is the month effective Selic interest rate in annualized terms, \(h_t \) is the output gap, \(E_t \pi_t \) is the expected inflation rate in \(t \) and \(\pi^*_t \) is the inflation target for \(t \). However, taking into account the fact that in Brazil, the inflation target for \(t \) and \(t+1 \) is known by the BCB at the beginning of \(t \), it is reasonable to assume\(^9\) that monetary policy is guided by the inflation target for the current year and the subsequent. Thus, following Minella et al. (2003), we will use a weighted average of the expected inflation deviation from its target for years \(t \) and \(t+1 \), respectively, given by:

\[D_{jt} = \frac{4-j}{4} (E_j \pi_t - \pi^*_t) + \frac{j}{4} (E_j \pi_{t+1} - \pi^*_t) \tag{25} \]

where \(j \) is the quarterly index, \(E_j \pi_t \) is the expected inflation for \(t \) in quarter \(j \), \(E_j \pi_{t+1} \) is the expected inflation for \(t+1 \) in quarter \(j \), \(\pi^*_t \) is the inflation target for \(t \) and \(\pi^*_{t+1} \) is the inflation target for \(t+1 \). Therefore, the central bank’s reaction function becomes:

\[i_t = \beta_1 i_{t-1} + (1 - \beta_1)(\beta_2 h_t + \beta_3 D_{jt}) + \varepsilon_t \tag{26} \]

The sample for the estimation was constructed through three series: Effective Selic interest rate, annualized. Available at BCB\(^{10}\); Inflation target, defined by the National Monetary Council (CMN) and available at the BCB\(^{11}\); Expected inflation for IPCA, available at FOCUS Expectations System - BCB.

The data cover the period 2000Q2-2019Q4 and are in quarterly frequency. In order to assess the adherence of the estimates to the effective Selic rate, a reaction function was estimated for each output gap series, through the Ordinary Least Squares (OLS) methodology. We are aware that the most common strategy to deal with the problem of endogeneity is to estimate a reaction function (Taylor type) using the Generalized Method of Moments (GMM) method. However, as demonstrated by Stock e Yogo (2002), weak instruments lead to poor parameter identification and asymptotic results become a poor guide to the actual sampling distributions. Also, Carvalho, Nechio e Tristao (2019) argue in favor of OLS estimation for monetary policy rules. For the authors, the standard practice in the empirical literature of using lagged endogenous variables as instruments brings an additional complication when shocks are persistent, as is the case of monetary policy shock (see Tables 1 and 2), because instruments and shocks may be correlated, hampering the asymptotic properties of GMM estimates. Thereby, for each estimate, forecasts were made up to eight steps ahead and as evaluation criterion, the root mean square error (RMSE) was adopted. In the table below, the regressions results are presented.

\(^9\) The monetary authority itself takes this stance in the monetary policy decision announcements of the Copom (Monetary Policy Committee).

\(^{10}\) Series code 4189.

\(^{11}\) Series code 13521.
Table 4 – Central Bank Reaction Function - Taylor Rule - OLS

<table>
<thead>
<tr>
<th></th>
<th>MS-DSGE</th>
<th>IPEA</th>
<th>HP Filter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>0.381 (0.476)</td>
<td>1.138*** (0.367)</td>
<td>0.701* (0.369)</td>
</tr>
<tr>
<td>Selic - 1</td>
<td>0.914*** (0.042)</td>
<td>0.847*** (0.034)</td>
<td>0.906*** (0.035)</td>
</tr>
<tr>
<td>Djt</td>
<td>0.416*** (0.126)</td>
<td>0.559*** (0.119)</td>
<td>0.443*** (0.117)</td>
</tr>
<tr>
<td>Gap</td>
<td>0.054* (0.029)</td>
<td>0.117*** (0.032)</td>
<td>0.260*** (0.057)</td>
</tr>
<tr>
<td>Observations</td>
<td>68</td>
<td>68</td>
<td>68</td>
</tr>
<tr>
<td>R²</td>
<td>0.944</td>
<td>0.951</td>
<td>0.951</td>
</tr>
<tr>
<td>Adjusted R²</td>
<td>0.941</td>
<td>0.949</td>
<td>0.948</td>
</tr>
<tr>
<td>Residual Std. Error (df = 64)</td>
<td>0.948</td>
<td>0.949</td>
<td>0.949</td>
</tr>
<tr>
<td>F Statistic (df = 3; 64)</td>
<td>360.233***</td>
<td>418.387***</td>
<td>410.790***</td>
</tr>
<tr>
<td>Note:</td>
<td>*p<0.1; **p<0.05; ***p<0.01</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

As it can be seen in Table 5, the reaction function which used the HP Filter output gap series presented the lowest RMSE among the others, until six periods ahead, followed by the reaction function with the MS-DSGE series. But, for long-term forecasts, the DSGE approach showed better results from seven steps ahead. The output gap derived from the production function approaches based on the Orair e Bacciotti (2018) and Souza-Júnior (2017) works presented low predictive power in relation to the others.

It is worth noting that even though the MS-DSGE series does not have the lowest RMSE for short-term forecasts, the adjustment was significantly better than that of the production function approach. Still, it is necessary to remember that for the purposes of monetary policy, it is extremely important to understand the forces that act on the variables used to guide monetary policy decisions, and in this respect we cannot count on the HP filter series.

Table 5 – Central Bank Reaction Function - RMSE

<table>
<thead>
<tr>
<th></th>
<th>MS-DSGE</th>
<th>IFI</th>
<th>IPEA</th>
<th>HP Filter</th>
</tr>
</thead>
<tbody>
<tr>
<td>h = 1</td>
<td>0.1666</td>
<td>0.1488</td>
<td>0.2116</td>
<td>0.2389</td>
</tr>
<tr>
<td>h = 2</td>
<td>0.4645</td>
<td>0.3912</td>
<td>0.3976</td>
<td>0.4315</td>
</tr>
<tr>
<td>h = 3</td>
<td>0.9094</td>
<td>0.8732</td>
<td>0.8919</td>
<td>0.9248</td>
</tr>
<tr>
<td>h = 4</td>
<td>0.0273</td>
<td>0.0199</td>
<td>0.0186</td>
<td>0.0162</td>
</tr>
<tr>
<td>h = 5</td>
<td>0.0886</td>
<td>0.0835</td>
<td>0.0866</td>
<td>0.0866</td>
</tr>
<tr>
<td>h = 6</td>
<td>0.1201</td>
<td>0.107</td>
<td>0.1062</td>
<td>0.1062</td>
</tr>
<tr>
<td>h = 7</td>
<td>0.1408</td>
<td>0.1408</td>
<td>0.1408</td>
<td>0.1408</td>
</tr>
<tr>
<td>h = 8</td>
<td>0.2017</td>
<td>0.2017</td>
<td>0.2017</td>
<td>0.2017</td>
</tr>
</tbody>
</table>

5.2 Phillips Curve

The output gap estimates were used to forecast the free items inflation using the Phillips Curve, in the same proposal of Oliveira (2013)12. The aim is to verify if the structural output gap is a better predictor for inflation, since the output gap can serve as a measure of inflationary pressure. For this, the Phillips Curve used was:

$$\pi^f_t = \beta_1 \pi_{t-1} + \beta_2 E_t \pi_{t+1} + \beta_3 h_{t-1} + \varepsilon_t$$ \hspace{1cm} (27)

where π^f_t is the inflation of free items, π_t is the general inflation rate, $E_t \pi_{t+1}$ is the expectation in t of the general inflation for $t + 1$ and h_t is the output gap.

The sample data to perform the estimation were: Free IPCA inflation, annualized, available at BCB13; General IPCA inflation, annualized, available at IBGE and Smoothed expected IPCA inflation series, for $t + 1$, available at FOCUS Expectations System - BCB.

The data cover the period 2001Q4-2019Q4 and are in quarterly frequency. The free items IPCA inflation was chosen because this index is more sensitive to monetary policy, compared to the general index.

12 It uses the mean square error (MSE) as an evaluation criterion.

13 Series code 11428.
Here, the estimation was performed through GMM method and the choice of instruments was based on the proposal of Mendonça, Sachsida e Medrano (2012). Thus, the set of instruments used consists of lags up to the third order of general inflation, unemployment and nominal interest rate (Selic rate). In the same way as was performed in the reaction function exercise, for each output gap series, forecasts were made up to eight steps ahead and we also used the RMSE as the evaluation criterion.

Similarly to Oliveira (2013), no output gap series stands out among the group, so that a separate analysis by forecast horizon is justified. For one and two steps ahead, the HP Filter output gap presented a best perform, especially at two steps ahead. But at a forecast three and four steps ahead, the MS-DSGE was the series that added more information to the forecast. In its turn, the IFI output gap presented a better perform for six and seven steps ahead. By last, the HP Filter series stands out in the last forecast window. It is necessary to remember that these results are only comparative, since we are analyzing estimates that were not made from the same sample.

Table 6 – Phillips Curve - GMM

<table>
<thead>
<tr>
<th></th>
<th>MS-DSGE</th>
<th>IFI</th>
<th>IPEA</th>
<th>HP Filter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>−2.840*** (0.728)</td>
<td>−1.515** (0.607)</td>
<td>−0.645 (0.847)</td>
<td>−1.767*** (0.643)</td>
</tr>
<tr>
<td>(\Delta y_{t-1})</td>
<td>0.455*** (0.071)</td>
<td>0.516*** (0.062)</td>
<td>0.667*** (0.043)</td>
<td>0.697*** (0.053)</td>
</tr>
<tr>
<td>Exp.Smooth(_t)</td>
<td>1.106*** (0.131)</td>
<td>0.873*** (0.115)</td>
<td>0.554*** (0.145)</td>
<td>0.622*** (0.132)</td>
</tr>
<tr>
<td>J-Test</td>
<td>5.08</td>
<td>8.36</td>
<td>4.06</td>
<td>2.47</td>
</tr>
<tr>
<td>J-Test (p-valor)</td>
<td>0.53</td>
<td>0.21</td>
<td>0.67</td>
<td>0.87</td>
</tr>
<tr>
<td>Observations</td>
<td>69</td>
<td>69</td>
<td>69</td>
<td>69</td>
</tr>
</tbody>
</table>

Note: '*'\(p<0.1\); **\(p<0.05\); ***\(p<0.01\)

Table 7 – Phillips Curve - RMSE

<table>
<thead>
<tr>
<th></th>
<th>Root Mean Square Error - RMSE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(h = 1)</td>
</tr>
<tr>
<td>MS-DSGE</td>
<td>1.1139</td>
</tr>
<tr>
<td>IFI</td>
<td>1.1426</td>
</tr>
<tr>
<td>IPEA</td>
<td>1.1262</td>
</tr>
<tr>
<td>HP Filter</td>
<td>0.9246</td>
</tr>
</tbody>
</table>

6 Conclusions

The objective of this work was to contribute with the literature of output gap estimation, an unobservable variable that, due to this characteristic, presents different methodologies for its estimation. In this work, we estimated the output gap based on a fully specified DSGE model that incorporates Markov-Switching elements. This model-based estimation is a good measure for welfare since it is derived from optimizing behaviour of the agents. Also, the approach permits the estimation of structural parameters and the access to fundamental shocks, which allow an economic interpretation for movements of the estimated output gap.

In particular, we proposed four versions of the model and the one that best captured the recession periods that Brazil went through between 2000Q1-2019Q4 was that in which Taylor rule parameters were allowed to change, for one regime of high inflation targeting to another of low inflation targeting. In the historical decomposition analysis, we find that cost-push and demand shocks were the main forces in the output gap path for the period considered. Also, when comparing our MS-DSGE estimate with public production function approaches and the standard HP Filter estimate, we noticed that the MS-DSGE output gap presents some advantage for long-term forecasts, although the aggregate approach example perform better on shorter horizons.
No doubt, this work has its limitations. Despite the use of an MS-DSGE approach being a novelty to estimate the output gap in the Brazilian case, the model considered here does not portray a small open economy and also does not make use of any fiscal policy variable, which could add to the estimate. Also, we set some of our priors based on constant parameter DSGE models, which could not be the same in a switching approach. The adoption of exogenous transition probabilities is also a deficiency. We are aware that it would be better to estimate all the parameters together, including the probabilities, so that the optimizing behaviour also extended to the behavior of the monetary authority, which would choose what regime to follow for each state of the economy. We hope that, in a future work, we can overcome such limitations.

Bibliography

OLIVEIRA, L. P. D. C. Estimação estrutural do hiato do produto: uma análise para o brasil. 2013. Citado 9 vezes nas páginas 2, 4, 9, 10, 12, 13, 16, 17, and 18.

