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Abstract

As the international real rate of interest shows a decreasing path during the last 10 years or
so, I address how optimal monetary policy must conform to this new instance. For that, I first
identify the way monetary policy influences the probability of the nominal interest rate hitting
and remaining and the ZLB, by means of the expectations channel. Next, I derive the time-
consistent (unconditionally) optimal monetary policy under commitment to be adopted between
ZLB episodes, when the constraint is occasionally binding, in a standard New-Keynesian model,
and the central bank internalize its role in determining ZLB episodes. My approach allows for
directly retaining precautionary policy behavior even under the log-linearized version of the
model. So, it is easily incorporated into standard business cycle models. Finally, I verify how
optimal policy must be implemented as the natural real rate of interest decreases towards zero.
Results suggest that optimal policy resembles price level targeting at low real interest rates
and low levels of inflation targets (trend inflation). As the inflation target is increased, a more
entangled policy must be implemented, due to the following policy tradeoff. Strong responses to
negative demand shocks help output, but increase the probability of hitting the ZLB. Therefore,
more attenuated responses are indicated. Finally, the effects of increasing the inflation target
are not the same as the ones obtained under higher levels of natural real interest rates.
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1 Introduction

As the international long-run real rate of interest shows a decreasing path during the last decades,
recently hitting estimated levels as low as 1% or even smaller (see e.g. Laubach and Williams (2015),
Bauer and Rudebusch (2016) and Yi and Zhang (2016)), I address how optimal monetary policy must
conform to this new instance, in frameworks in which shocks (demand and technology) have continuos
distributions. Here, I contribute for the discussion by assessing the consequences of monetary policy
controlling future probabilities of hitting the zero lower bound (ZLB) in a economy in which the ZLB
constraint is occasionally binding. Moreover, I follow Damjanovic et al. (2008) strategy for deriving
optimal policies under unconditionally commitment, which is unconditionally time-consistent.
I first identify the way monetary policy influences the probability of the nominal interest rate

hitting and remaining and the ZLB, by means of the expectations channel. Next, I derive the time-
consistent (unconditionally) optimal monetary policy under commitment to be adopted between
ZLB episodes, when the constraint is occasionally binding, and the central bank internalize its role
in determining ZLB episodes.
An important result is that my results directly internalize precautionary behavior even under the

first-order approximation of the model. This is an important difference from my result to similar ones
in the literature, e.g. Eggertsson and Woodford (2003a,b) and Nakov (2008). I obtain a targeting
rule whose form is a direct convex combination between the standard optimal targeting rule obtained
by those authors under usual Kuhn-Tucker optimization, and components capturing precautionary
behavior. The long-run probability of hitting the ZLB works as the combination weight.
I find that optimal policy resembles price level targeting at low real interest rates and low levels

of inflation targets (trend inflation). Under low levels of nominal interest rates, the optimal targeting
rule becomes even more history dependent and more dependent on past values of the nominal interest
rate. That is, the central bank consciously and directly adopts precautionary behavior in normal
times, not decreasing the rate as much on spot in response to negative demand shocks in order
to create more room for future effective monetary policy changes. It also takes even longer than
what standard optimal policy (e.g. Nakov (2008)) prescribe to increase the rates after the shocks
have dissipated. This precautionary behavior becomes stronger as the steady state level of nominal
interest rate is reduced.
I also find that, as the inflation target is increased, a more entangled policy must be implemented,

as the effects of increasing the inflation target are not the same as the ones obtained under higher
levels of natural real interest rates. As a matter of fact, higher levels of trend inflation also brings
distortions to the economy.
When the monetary authority does not directly internalize its role in affecting the probability

of hitting the ZLB, as in e.g. Nakov (2008), the functional form of optimal targeting rules during
normal times are the same as the ones obtained in economies where the ZLB is never hit. In this
standard approach, policy precautionary behavior arises only indirectly in general equilibrium, and
so the central bank does not benefit as much.
When comparing welfare-based performances of both types of optimal policies under occasionally

binding ZLB constraint, I find that the precautionary optimal policy dominates the standard optimal
policy for every level of real interest rates and trend inflation (inflation target).
The remainder of the paper is organized as follows. The model is described in Section 2. Key

results on the probability of hitting the ZLB and the design of the precautionary optimal policy are
derived in Section 3. The effect of declining real interest rates at different levels of trend inflation
on welfare is discussed in Section 5.1, while Section 5.2 assesses how optimal policies perform after
negative demand shocks. Section 6 summarizes the paper’s conclusions.



2 The model

For simplicity, I follow Woodford (2003, chap. 4) to describe the standard new-Keynesian model
with Calvo (1983) price setting and flexible wages. The economy consists of a representative infinite-
lived household that consumes an aggregate bundle and supplies differentiated labor to a continuum of
differentiated firms indexed by z ∈ (0, 1), which produce and sell goods in a monopolistic competition
environment.

2.1 Households

Household’s workers supply ht (z) hours of labor to each firm z, at nominal wageWt (z) = Ptwt (z),
where Pt is the consumption price index and wt (z) is the real wage. Disutility over hours worked
in each firm is υt (z) ≡ χht (z)1+ν / (1 + ν), where ν−1 is the Frisch elasticity of labor supply. The
household’s aggregate disutility function is υt ≡

∫ 1

0
υt (z) dz. Consumption ct (z) over all differen-

tiated goods is aggregated into a bundle Ct, as in Dixit and Stiglitz (1977), and provides utility
ut ≡ εtC

1−σ
t / (1− σ), where σ−1 is the intertemporal elasticity of substitution and εt is a preference

shock. Aggregation and expenditure minimization relations are described by C
θ−1
θ

t =
∫ 1

0
ct (z)

θ−1
θ dz,

P 1−θ
t =

∫ 1

0
pt (z)1−θ dz, ct (z) = Ct

(
pt(z)
Pt

)−θ
and PtCt =

∫ 1

0
pt (z) ct (z) dz, where θ > 1 is the elasticity

of substitution between goods.
The budget constraint is PtCt + Etqt+1Bt+1 ≤ Bt + Pt

∫ 1

0
wt (z)ht (z) dz + dt, under complete

financial markets, where Bt is the state-contingent value of the portfolio of financial securities held
at the beginning of period t, dt denotes nominal dividend income, and qt+1 is the stochastic discount
factor from (t+ 1) to t. The household chooses the sequence of Ct, ht (z) and Bt+1 to maximize its
welfare measure Wt ≡ maxEt

∑∞
τ=t β

τ−t (uτ − υτ ), subject to the budget constraint and a standard
no-Ponzi condition, where β denotes the subject discount factor. In equilibrium,1 optimal labor
supply satisfies wt (z) = υ′t (z) /u′t, where u

′
t ≡ ∂ut/∂Ct is the marginal utility to consumption and

υ′t (z) ≡ ∂υt (z) /∂ht (z) is the marginal disutility to hours. The optimal consumption plan and

dynamics of the stochastic discount factor are described by 1 = βEt

(
u′t+1
u′t

It
Πt+1

)
and qt = β

u′t
u′t−1

1
Πt
,

where Πt = 1 +πt and It = 1 + it are the gross inflation and interest rates at period t, which satisfies
It = 1/Etqt+1, and it is the riskless one-period nominal interest rate.

2.2 Firms

Firm z ∈ (0, 1) produces differentiated goods using the technology yt (z) = Atht (z)ε, where At
is the aggregate technology shock and ε ∈ (0, 1). The aggregate output Yt is implicitly defined
by PtYt =

∫ 1

0
pt (z) yt (z) dz. Using the market clearing condition yt (z) = ct (z), ∀z, the definition

implies that the firm’s demand function is yt (z) = Yt (pt (z) /Pt)
−θ, where Yt = Ct.

With probability (1− α), the firm optimally readjusts its price to pt (z) = p∗t . With probability
α, the firm sets its price according to pt (z) = pt−1 (z) Πind

t , where Πind
t ≡ Π

γπ
t−1 and γπ ∈ (0, 1). When

optimally readjusting at period t, the price p∗t maximizes the expected discounted flow of nominal
profits Pt (z) = pt (z) yt (z)−Ptwt (z)ht (z)+Etqt+1Pt+1 (z), given the demand function and the price
setting structure. At this moment, the firm’s real marginal cost is mc∗t = (1/µ)X

(ω+σ)
t (p∗t/Pt)

−θω,
where ω ≡ (1 + ν) /ε−1 is a composite parameter, µ ≡ θ/ (θ − 1) > 1 is the static markup parameter,
Xt ≡ Yt/Y

n
t is the gross output gap, and Y n

t is the natural (flexible prices) output, which evolves
according to Y n(ω+σ)

t = ε
χµ
εtA(1+ω)

t .

1Equilibrium is defined as the equations describing the first order conditions, a transversality condition
lim
T→∞

ET qt,TBT = 0, where qt,T ≡ ΠT
τ=t+1qτ , and the market clearing conditions.



Following e.g. Ascari and Sbordone (2013, Section 3) and Ascari (2004, online Appendix), the

firm’s first order condition can be conveniently written, in equilibrium, as
(
p∗t
Pt

)1+θω

= Nt
Dt
. The

numerator Nt and the denominator Dt functions can be written in recursive forms, avoiding infinite
sums:

Nt = (Xt)
(ω+σ) + Etnt+1Nt+1 ; nt = αqtGtΠt

(
Πt

Πindt

)θ(1+ω)

Dt = 1 + Etdt+1Dt+1 ; dt = αqtGtΠt

(
Πt

Πindt

)(θ−1) (1)

where Gt ≡ Yt/Yt−1 denotes the gross output growth rate. The price setting structure implies the

the dynamics: 1 = (1− α)
(
p∗t
Pt

)−(θ−1)

+ α
(

Πt
Πindt

)(θ−1)

.

2.3 Aggregates

Following, I present a set of equations describing the evolution of the aggregate disutility υt ≡∫ 1

0
υt (z) dz to labor and the aggregate hours worked ht ≡

∫ 1

0
ht (z) dz. For that, let P−θ(1+ω)

t ≡∫ 1

0
(pt (z) /Pt)

−θ(1+ω) dz and P−θ(1+ω̃)
ht ≡

∫ 1

0
(pt (z) /Pt)

−θ(1+ω̃) dz denote two distinct measures of ag-
gregate relative prices, where ω̃ ≡ 1

ε
− 1. Using the Calvo (1983) price setting structure, I am able

to derive the laws of motion of Pt and Pht.2 The result is general and independent of any level of
trend inflation. The following system describes the evolution of υt, ht, Pt and Pht:

υt = χ
1+ν

(
Yt
At

)(1+ω)

P−θ(1+ω)
t ; ht =

(
Yt
At

)(1+ω̃)

P−θ(1+ω̃)
ht

P−θ(1+ω)
t = (1− α)

(
p∗t
Pt

)−θ(1+ω)

+ α
(

Πt
Πindt

)θ(1+ω)

P−θ(1+ω)
t−1

P−θ(1+ω̃)
ht = (1− α)

(
p∗t
Pt

)−θ(1+ω̃)

+ α
(

Πt
Πindt

)θ(1+ω̃)

P−θ(1+ω̃)
ht−1

where ℘∗t ≡ p∗t/Pt is the optimal resetting relative price.

2.4 The log-linearized model

For any variableWt, ŵt ≡ log
(
Wt/W

)
represents its log-deviation from its steady state levelW

with non-zero trend inflation (Trend StSt).
Under flexible prices (α = 0), the (log-deviation) real interest rate and (log-deviation) output ŷnt

evolve according to the following equations:

r̂nt = Et
[
σ
(
ŷnt+1 − ŷnt

)
− (ε̂t+1 − ε̂t)

]
; ŷnt = 1

(ω+σ)

[
(1 + ω) Ât + ε̂t

]
(2)

Under sticky prices (α > 0),3 the (log-deviation) output gap x̂t is defined as x̂t = ŷt − ŷnt , whose
dynamics are described by the (log-linearized) IS curve x̂t = Etx̂t+1 − 1

σ
Et (̂ıt − π̂t+1 − r̂nt ).

The Generalized New Keynesian Phillips Curve (GNKPC) under trend inflation, as coined by
Ascari and Sbordone (2013), is obtained by log-linearizing the firm’s first order conditions and the
price setting structure about the Trend StSt. As in Alves (2014), I describe the GNKPC system in

2The way I derive the law of motion of Pt and Pht is very similar to how e.g. Alves (2014), Schmitt-Grohe and
Uribe (2007) and Yun (2005) derive relevant price dispersion variables for aggregate output, employment, resource
constraints and aggregate disutility in their models.

3I am aware that the degree of price rigidity α is likely to endogenously decrease as the trend inflation rises. I
assume, however, that the parameter remains constant for all values of trend inflation as long as it is suffi ciently small
(less than 5% year, for instance).



terms of the output gap as the only demand variable:(
π̂t − π̂indt

)
= βEt

(
π̂t+1 − π̂indt+1

)
+ κ̄x̂t +

(
ϑ̄− 1

)
κ̄$βEt$̂t+1 + ût

$̂t = ᾱϑ̄βEt$̂t+1 + θ (1 + ω)
(
π̂t − π̂indt

)
+
(
1− ᾱϑ̄β

)
(ω + σ) x̂t + (1− σ) (x̂t − x̂t−1)

ût = ᾱϑ̄βEtût+1 +
(
ϑ̄− 1

)
βEtξ̂t+1

ξ̂t = κ̄$
(1+ω)
(ω+σ)

[
(1− σ)

(
Ât − Ât−1

)
+ (ε̂t − ε̂t−1)

]
(3)

where π̂indt = γππ̂t−1 is the indexation term, $̂t is an ancillary variable with no obvious interpre-
tation,4 ξ̂t is an aggregate shock term that collects the effects of the technology shock Ât and the
utility shock ε̂t, and ût is the endogenous trend inflation cost-push shock, which ultimately depends
only on the technology and preference shocks. As for the composite parameters, ϑ̄ ≡ Π̄(1+θω)(1−γπ) is
a positive transformation of the level π̄ of trend inflation and ᾱ ≡ αΠ̄(θ−1)(1−γπ) is the effective degree
of price stickiness.5 Since ᾱ and ϑ̄ increase as trend inflation rises, the trend inflation cost-push shock
ût amplifies, by means of

(
ϑ̄− 1

)
and the coeffi cient ᾱϑ̄β on Etût+1, the effect of the aggregate shock

ξ̂t and transmits it through the inflation dynamics. The remaining composite parameters are

κ̄ ≡ (1−ᾱ)(1−ᾱβϑ̄)
ᾱ

(ω+σ)
(1+θω)

; κ̄$ ≡ (1−ᾱ)
(1+θω)

; ω ≡ (1+ν)
ε
− 1 (4)

As well documented in the literature on trend inflation, the GNKPC becomes flatter (κ̄ decreases)
and more forward looking (

(
ϑ̄− 1

)
κ̄$β and ᾱϑ̄β increases) with trend inflation.6 The effect of $̂t

on the inflation dynamics is to make it even more forward looking. This is due to the fact that the
coeffi cients

(
ϑ̄− 1

)
on Et$̂t+1, in the first equation, and ᾱϑ̄β on Et$̂t+1, in the second equation,

increase as trend inflation rises.
As for the aggregates, where ϑ̃ ≡ Π̄(1+θω̃)(1−γπ) and ω̃ ≡ 1

ε
− 1, we have:

υ̂t = (1 + ω)
(
ŷt − Ât − θP̂t

)
; ĥt = (1 + ω̃)

(
ŷt − Ât − θP̂ht

)
P̂t = ᾱϑ̄P̂t−1 −

(ϑ̄−1)ᾱ
(1−ᾱ)

(
π̂t − π̂indt

)
; P̂ht = ᾱϑ̃P̂ht−1 −

(ϑ̃−1)ᾱ
(1−ᾱ)

(
π̂t − π̂indt

)
3 Probability of hitting the ZLB

Given the information set It at period t, the probability po,t ≡ P (It ≤ 1|It−1) of hitting the ZLB
at period t is an endogenous variable. In this regard, monetary policy has an important role, for it
influences po,t by means of the expectations channel.
I assume that the preference (demand) shock εt follows an AR(1) process εt = ε

ρu
t−1εu,t, where

εu,t is a unit-meaned white noise disturbance term. Let us first consider the natural (flexible prices)
equilibrium, in which the inflatin rate is kept fixed at the trend inflation level π̄. In this case,
natural output Y n

t evolves according to Y n(ω+σ)

t = ε
χµ
εtA(1+ω)

t , where I assume that the technology
shock follows an AR(1) process At = Aρat−1εa,t, where εa,t is a unit-meaned white-noise disturbance,
independent of εu,t. Using the Euler equation and the marginal utility definition, I compute pno,t as

4In the literature on trend inflation, there are two usual ways to describe trend inflation Phillips curves: (i) with
ancillary variables (e.g. Ascari and Ropele (2007)); and (ii) with infite sums (e.g. Cogley and Sbordone (2008) and
Coibion and Gorodnichenko (2011)).

5The composite parameters ᾱ and ϑ are bounded by max (ᾱ, ᾱϑ) < 1 to guarantee the existence of an equilibrium
with trend inflation.

6As Ascari and Ropele (2007) show, the GNKPC reduces to the usual form when the level of trend inflation is zero.
In this case, the ancillary variable $̂t become irrelevant and the trend inflation cost-push shock ût vanishes to zero.



follows (see the appendix for more details):

pno,t = Fua
(
β

Π̄
(εt−1)

−ωρu(1−ρu)
(ω+σ) (At−1)

σ(1+ω)ρa(1−ρa)
(ω+σ)

)
where Fua (κ) ≡ P (εua,t ≤ κ) and fua (κ) are the cdf and density function of the aggregate shock εua,t ≡
(εu,t)

ω(1−ρu)
(ω+σ) (εa,t)

−σ(1+ω)(1−ρa)
(ω+σ) . If εu,t

iid∼ LN (0, s2
u) is independent of εa,t

iid∼ LN (0, s2
a), where s

2
u and s

2
a

are dispersion parameters, then εua,t
iid∼ LN (0, s2

ua), where s
2
ua ≡

(
ω(1−ρu)
(ω+σ)

)2

s2
u+
(
σ(1+ω)(1−ρa)

(ω+σ)

)2

s2
a. At

the steady state, with ε̄ = 1 and A = 1, I obtain:7

p̄no = Fua
(
β
Π̄

)
= 1

2

[
1 + erf

(
−1√

2
i̊
sua

)]
; f̄ua = fua

(
β
Π̄

)
= Ī√

2πs2ua
exp

(
−1

2

(
i̊
sua

)2
)

where Ī = Π̄/β and i̊ ≡ log
(
Ī
)
is −ı̂t evaluated at it = 0.

A linear approximation of pno,t about the trend inflation steady state is what I call the natural
ZLB Probability curve:

pno,t ≈ p̄no − φε
[
ωρu (1− ρu)

(ω+σ)
ε̂t−1 −

σ (1 + ω) ρa (1− ρa)
(ω+σ)

Ât−1

]
(5)

where φε ≡ β
Π̄
f̄ua = 1√

2πs2ua
exp

(
−1

2

(
i̊
sua

)2
)
is the shock-elasticity of ZLB probability.

Note now that, conditional on the expected paths of output and inflation in any equilibrium with
trend inflation, po,t satisfies:

po,t = Fuρ

(
(εt−1)−ρu(1−ρu) Et

(
β

Πt+1

(
Yt+1

Yt

)−σ
εu,t+1

))

where εuρ,t ≡ (εu,t)
(1−ρu), whose distribution is εuρ,t

iid∼ LN
(
0, s2

uρ

)
, where s2

uρ ≡ (1− ρu)
2
s2
u.

There is no closed-form solution for po,t, as it depends on the joint distribution of the expected
path of the endogenous variables and the exogenous shocks. However, I it is easy to conclude that
p̄o = p̄no once we account that the distorsive contribution of non-zero levels of trend inflation is offset
in the steady-state value of (Yt+1/Yt).
In this context, the log-linearization of po,t is what I call the ZLB Probability curve:

po,t ≈ p̄o − φεEt
[
σ
(
Ŷt+1 − Ŷt

)
+ π̂t+1

]
− φερu (1− ρu) ε̂t−1 (6)

As expected, the conditional probability po,t of hitting the ZLB falls when we expect output and
inflation to rise and have had positive demand shocks.

3.1 Monetary policy

In Alves (2014), I derive a trend-inflation welfare based TIWeB loss function, which implies the

following second order log-approximation of the (negative) welfare functionWt = −1
2
V̄Et

∞∑
τ=0

βτ L̄t+τ+

tip
W
t , where L̄t ≡

(
π̂t − π̂indt + φ̄π

)2
+ X̄

(
x̂t − φ̄x

)2
is the trend inflation welfare-based (TIWeB) loss

function, tip
W
t stands for terms independent of policy at period t, φ̄π and φ̄x are constants that

7Recall that the cdf and pdf of a log-normal distributed random variable κ ∼ LN
(
µ, s2

)
are F (x) =

1
2

[
1 + erf

(
log(κ)−µ√

2s2

)]
and f (x) = 1

κ
√
2πs2

exp
(
− 12

(log(κ)−µ)2
s2

)
.



depend on the ineffi ciency parameters Φ̄ϑ ≡
(
ϑ̄− 1

)
and Φ̄y ≡ 1 − ῡY /ūY , and V̄ corrects for the

aggregate reduction in the welfare when trend inflation increases. Those composite parameters are
defined as follows:

φ̄π ≡
(1−ᾱ)

(1−ᾱϑ̄)(1+θω)
Φ̄ϑ ; φ̄x ≡ 1

(ω+σ)
Φ̄y ; V̄ ≡ (ω+σ)

X̄ Ȳ
1−σ

; X̄ ≡ (1−ᾱ)

(1−ᾱϑ̄)
κ̄
θ (7)

Assume that the central bank implements inflation targeting by keeping the unconditional mean
of the inflation rate at the central target π̄, or Eπt = π̄. When log-linearizing around the inflation
target, Eπ̂t = 0. As for the ZLB constraint It > 1, its log-linearized form is ı̂t ≥ −̊i, where again
i̊ ≡ log

(
Ī
)
is −ı̂t evaluated at it = 0.

Here, I expand optimal policies results I obtained in Alves (2014) by internalizing the influence
monetary policy has in gauging po,t when deriving trend inflation optimal policies rules under un-
conditionally commitment (e.g. Damjanovic et al. (2008)), which is unconditionally time-consistent.
That is, there is no inconsistency arising from first-order conditions obtained at first periods of
optimization steps. As a consequence, unconditionally, the monetary authority has no incentive to
deviate from the optimal policy rule. I assume that the welfare-concerned central bank minimizes the
unconditional expectation of the Lagrangian problem formed by the discounted sum of the TIWeB
loss function, subject to the IS curve, GNKPC (3), ZLB Probability curve (6), Eπ̂t = 0 and the
constraint ı̂t ≥ −̊i.
In order to make it easier to derive optimal policies rules under unconditionally commitment, I

use the ancillary variable %̂t and split the IS curve into x̂t = %̂t− 1
σ
ı̂t+

1
σ
r̂nt and %̂t = Et

(
x̂t+1 + 1

σ
π̂t+1

)
.

Since it is the unconditional expectation which is minimized, optimal policy rules derived this
way are unconditionally time consistent.

The use of unconditional expectations allows us to decompose the problem in periods for which
ı̂t ≥ −̊i is biding, with probability po,t, and those in which the restriction is loose, with probability
(1− po,t). When the restriction binds, I simply impose ı̂t = −̊i into the IS curve, which is the only
one affected by the restriction. The remaining equations are not affected. Analogously, the only
loss function quadratic term affect by the restriction is X̄

(
x̂t − φ̄x

)2
. When building the Lagrangian

form, the simplest approach is to directly impose the restricted IS curve x̂t = %̂t + 1
σ
i̊ + 1

σ
r̂nt into

X̄
(
x̂t − φ̄x

)2
when the restriction binds.

In addition, the whole Lagrangian problem must be of order O (2), for this is the order to which
the welfare function is log-approximated. Since log-linearized equations are used as restrictions,
Lagrangian multipliers must be of order O (1). This order issue is relevant when adding the ZLB
Probability curve (6), i.e. first order approximation of po,t, into the problem. The issue arises
when multiplying this approximation by the second order components from the loss function. We
must disregard all O (3) terms from the resulting multiplication. In Alves (2014), I show that the
distortion parameters φ̄π and φ̄x must be of order O (1) in order for the trend inflation welfare-based
loss function to be properly used with log-linearized equations when deriving optimal policy rules.
With the same logic, I assume that i̊ is of orderO (1). This assumption is reasonable once we consider
that any hatted variable is assumed to be of order O (1) and i̊ is −ı̂t evaluated at it = 0.
After taking in consideration the fact that the Lagrangian problem may only have O (3) terms,

I derive the trend inflation optimal policy rules under unconditionally commitment (based on e.g.
Damjanovic et al. (2008)), for the case in which the monetary authority internalizes its influence over
episodes of occasionally hitting the ZLB on nominal interest rates, as described by proposition 1.8

8In Alves (2014), I find that the trend inflation optimal policy under unconditionally commitment slightly dominates
the one from timeless perspective, even though both optimal policy rules imply almost indistinguishable dynamics
and unconditional moments. Due to this result, I choose the aproach of deriving optimal policy under unconditionally
commitment to deal with ZLB occasionally binding constraints.



Proposition 1 When a welfare-concerned central bank targets π̄ as the inflation target, follows the
recommendations of the TIWeB loss function, and recognizes its role in influencing occasionally
binding episodes of hitting the zero-lower bound (ZLB) on nominal interest rates, the optimal precau-
tionary policy under unconditionally commitment are described by the following targeting rule, when
the ZLB constraint is not binding:

0 =
(
π̂t − π̂indt

)
+ (1− p̄o) 1

c1

X̄
κ̄

[x̂t − βx̂t−1 − (c2 − c1) κ̂1,t−1] + p̄oX̄
(

1
σ
∂̂1,t + 1

κ̄
∂̂2,t

)
(8)

where κ̂t, ∂̂1,t and ∂̂2,t are ancillary variables, whose dynamics are described by

κ̂t = c4
c1
κ̂t−1 + c3

c1
x̂t − β

c1

(
1− ᾱβϑ̄

)
x̂t−1

∂̂1,t = γπEt∂̂1,t+1 +
(
x̂t + 1

σ
ı̂t
)

∂̂2,t = c4
c1
∂̂2,t−1 + 1

c1

(
x̂t−1 + 1

σ
ı̂t−1

)
− 1
c1

[(
1 + ᾱϑ̄

)
β + κ̄θ (c2 − c1)

] (
x̂t−2 + 1

σ
ı̂t−2

)
+ 1

c1
ᾱϑ̄β2

(
x̂t−3 + 1

σ
ı̂t−3

)
and the composite parameters are defined as follows:

c1 ≡ 1−
(
ϑ̄− 1

)
β κ̄$

κ̄
(1− σ) ; c2 ≡ 1 +

(
ϑ̄− 1

)
β κ̄$

κ̄
(ω + σ)

c3 ≡ θκ̄c1 +
(
1− ᾱβϑ̄

)
; c4 ≡ c1 −

(
1− ᾱβϑ̄

)
c2

(9)

The proof follows standard optimization steps, and so is not shown here.
Of course, ı̂t → −̊i when the ZLB constraint binds. Therefore, the full targeting rule must be

understood as the one to be pursued in between occasionally binding episodes when the monetary
authority is internalizes its role of influencing the probability of hitting the ZLB by means of the
expectations channel. Note that under low steady level of the (gross) nominal interest rate Ī = Π̄/β,
p̄o and φε fast increase and the full targeting rule becomes more and more history dependent and more
directly dependent on the history of nominal interest rates. As I find, the central bank consciously
and directly adopts precautionary behavior in normal times in order not to cut nominal interest
rates so fast after negative demand shocks and taking longer to increase the rate after the shock has
dissipated. And p̄o gauges the optimal degree to which this behavior is to be used.
These terms do not arise when the monetary authority do not directly internalize its role in

affecting the probability of hitting the ZLB, as in e.g. Eggertsson and Woodford (2003a,b) and Nakov
(2008). In their approach, policy precautionary behavior arises indirectly in general equilibrium, and
so the central bank does not benefit as much.
Recall that p̄o and φε are direct functions of the steady level of the (gross) nominal interest rate

Ī = Π̄/β, which can change by either changing the steady state level of (gross) real interest rate
R̄ = 1/β or the level of (gross) trend inflation Π̄. Therefore, the effects of rising Π̄ or R̄ are perfectly
substitutes on what regards p̄o and φε. However, the effects of both margins are different on the
targeting rule are very different and not substitutes. And so, rising the trend inflation (inflation
target) level is not a perfect remedy to instances in which the real interest rate is falling. That is, it
is not enough to rise the trend inflation target as it wold create more distortions.
The effects of rising trend inflation on trend inflation composite parameters, such as ᾱ, ϑ̄, c1, c2,

c3, c4, and κ̄, do not parallel those obtained by increasing 1/β. As a matter of fact, rising levels of
trend inflation might create more instability, as shown in the literature of trend inflation.
For larger steady state levels of nominal interest rate, as we used to have in the past, p̄o shrinks

down to zero. Therefore, the rule returns to the trend inflation form obtained in Alves (2014),
i.e. 0 =

(
π̂t − π̂indt

)
+ 1

c1

X̄
κ̄

[x̂t − βx̂t−1 − (c2 − c1) κ̂1,t−1], in which the targeting rule becomes more
history dependent as trend inflation rises. The results obtained by Damjanovic et al. (2008) refer
to the particular case π̄ = 0, for which ᾱ = α, and ϑ̄ = c1 = c2 = 1. In that case, the targeting



rule under unconditionally commitment is 0 =
(
π̂t − π̂indt

)
+ X̄

κ̄
(x̂t − βx̂t−1), which that authors

show to slightly dominate the Woodford (2003) Timeless perspective targeting rule. The latter has
(x̂t − x̂t−1) instead of (x̂t − βx̂t−1) as its last term. As a consequence, Timeless perspective optimal
policy is equivalent to price level targeting, while unconditionally commitment optimal policy is not.
It is easy to verify that the last result is the obtained optimal policy under unconditionally

commitment when expanding Nakov (2008) approach to the trend inflation case. Again, ı̂t → −̊i
when the ZLB constraint binds. Note that this policy rule does not directly internalize policy
precautionary behavior —it does under general equilibrium, however. Therefore, I call this targeting
rule the Standard Optimal Policy under occasionally binding ZLB constraint, in order to distinguish
it from the Precautionary Optimal Policy (8) under occasionally binding ZLB constraint.
If π̄ = 0 and the economy has low levels of nominal interest rates, p̄o fast increase and so the

precautionary targeting rule becomes even more history dependent and more directly dependents on
the history of nominal interest rates:

0 =
(
π̂t − π̂indt

)
+ (1− p̄o) X̄κ̄ (x̂t − βx̂t−1) + p̄oX̄

(
1
σ
∂̂1,t + 1

κ̄
∂̂2,t

)
∂̂1,t = γπEt∂̂1,t+1 +

(
x̂t + 1

σ
ı̂t
)

∂̂2,t = αβ∂̂2,t−1 +
(
x̂t−1 + 1

σ
ı̂t−1

)
− (1 + α) β

(
x̂t−2 + 1

σ
ı̂t−2

)
+ αβ2

(
x̂t−3 + 1

σ
ı̂t−3

)
Using the lag L (·) operator, note that we can rewrite the rule as follows:

0 =
(
π̂t − π̂indt

)
+ (1− p̄o) X̄κ̄ (1− βL) x̂t + p̄oX̄

(
1
σ
∂̂1,t + 1

κ̄
∂̂2,t

)
∂̂1,t = γπEt∂̂1,t+1 +

(
x̂t + 1

σ
ı̂t
)

(1− αβL) ∂̂2,t = (1− αβL) (1− βL)
(
x̂t−1 + 1

σ
ı̂t−1

)
Consider the case in which the (gross) real interest rate R̄ = 1/β has been reducing over time,

i.e. β is approaching closer and closer to unity. In this case, (1− L) is a good approximation for
(1− βL). Moreover, empirical microevidence strongly suggests that there is none or very small degree
of price stickiness in the US, i.e. γπ is very small. Since π̂t = (1− L) p̂t and π̂

ind
t = (1− L) p̂indt , for

p̂indt = γπp̂t−1, the targeting rule is reasonably approximated by the following expression when R̄ is
small:

0 ≈ (1− L)
(
p̂t − p̂indt

)
+ (1− p̄o) X̄κ̄ (1− L) x̂t + p̄o

X̄
κ̄

[
κ̄
σ

+ (1− L)L
] (
x̂t + 1

σ
ı̂t
)

Since macroevidence suggests that σ >> κ̄, i.e. κ̄
σ
is very small, the second term dominates the

expression inside brackets. We then follow to "divide" the expression by (1− L), and obtain the
simplification:

0 ≈
(
p̂t − p̂indt

)
+ (1− p̄o) X̄κ̄ x̂t + p̄o

X̄
κ̄

(
x̂t−1 + 1

σ
ı̂t−1

)
(10)

That is, under low levels of steady state real interest rate, a central bank who internalizes its role
in influencing the probability of hitting the ZLB would implement monetary policy according to a
optimal (unconditionally) time-consistent policy rule that closely resembles price level targeting.
In order to understand the effect of monetary policy internalizing its influence over the probability

po,t of hitting the zero lower bound, suppose that the economy was hit by a negative demand shock.
Under negligible values of p̄o, the standard result is that monetary policy lowers the rate in order
to compensate the fall in current output gap so that

(
p̂t − p̂indt

)
remains equal to zero, i.e. prices

remain stable and monetary policy pursues price level targeting.
Under non-negligible steady state probability p̄o, current probability p̂o,t of hitting the ZLB rises

by means of the ZLB Probability curve (6). Monetary policy now also look further into the past
history of output gap and nominal interest rates. As a consequence, monetary policy does not react



as strong on impact, for it also looks into periods in which the output gap was not yet hit by the
shock. This slow down in reducing the rate makes more room for monetary policy to avoid hitting the
ZLB. On the other hand, after the negative demand shock has dissipated, monetary policy continues
to look longer in the past and still take in consideration that the output gap has fallen in the past.
Therefore, nominal rates take longer to return. I highlight that this duration depends on p̄o. Hence,
forward guidance is always optimized under this policy rule.
Finally, the presence of ı̂t−1 in the targeting rule is a novelty in the literature of optimal policy

prescriptions. It naturally arises as p̄o rises and it serves to smooth optimal changes on nominal
interest rates. As a consequence, the rate does not fall (rise) as fast under negative (positive)
demand shocks when compared to responses under standard optimal policy prescriptions such as in
Damjanovic et al. (2008), Woodford (2003),and Nakov (2008).
Addressing the case under larger values of trend inflation π̄, under low real interest rates, is more

entangled. The targeting rules does not resembles price level targeting anymore. In this case, only
numerical analyses are feasible.

4 Calibration

The calibration is described as follows. As in Cooley and Prescott (1995), I set the elasticity
to hours at the production function at ε = 0.64. As in ,Coibion et al. (2012), I set the elasticity
of substitution at φ = 7, which implies a steady state price markup of µ = 1.17.9 Recall that the
(log-deviation) technology shock evolves according to Ât = ρaÂt−1 + ε̂a,t, where ε̂a,t

iid∼ N (0, s2
a).

Using the central estimate obtained by Smets and Wouters (2007) for the larger sample, I set the
autoregressive coeffi cient of the technology shock at ρa = 0.95 and the shock’s standard deviation
at sa = 0.0045. The remaining parameters were based on central estimates obtained by Smets and
Wouters (2007), for the Great Moderation. I set the reciprocal of the intertemporal elasticity of
substitution at σ = 1.47. As for the elasticity ν of the disutility from hours ht (z), i.e. the reciprocal
of the Frisch elasticity, I use ν = 2.30. Note that this value is consistent with micro evidence, as
reported by Chetty et al. (2011).10 I set the degree of price stickiness at α = 0.73, while the price
indexation parameter is fixed at γπ = 0.21. In addition, I set the disutility nuisance parameter at
χ = 1.
Recall that the (log-deviation) demand shock evolves according to ε̂t = ρuε̂t−1 + ε̂u,t, where ε̂u,t

iid∼
N (0, s2

u), and that I do not assume consumtion habit persistence in my model. Therefore, ρu will
play a similar role as the degree of habit persistence in this model. Therefore, based on the authors’
estimated habit persistence parameter, I set the persistence of the demand shock ρ = 0.68. In order
to adjust the implied dynamics implied by this assumption, I estimate su using quarterly US data
from the Great Moderation period 1985:Q1-2005:Q4. For that, I fix β = 0.995 (consistent with annual
real interest rate r̄ = 2%) and (annual) π̄ = 3.05% (consistent with the sample average of the CPI
inflation rate).
For estimation, I considered the following observed variables: (i) inflation rate π̂t is the (log) BLS

CPI inflation rate (US city average, all urban consumers), demeaned from its sample average; (ii)
output ŷt is the (log) BLS GDP, detrended by its linear trend; and (iii) nominal interest rate ı̂t is
the (log) quarterly average of the Federal Funds Rate, demeaned from its sample average.
Since I observe the nominal interest rate in the estimation, I assume that monetary policy followed

a simplifyed Trend Inflation Taylor rule, based on Coibion and Gorodnichenko (2011):

ı̂t = φiı̂t−1 + (1− φi)
[
φπEtπ̂t+1 + φxx̂t + φgy (ŷt − ŷt−1)

]
+ ε̂i,t (11)

9For instance, Ravenna and Walsh (2008, 2011) set the steady state price markup to 1.2.
10The authors conduct meta analyses of existing micro evidence. Their point estimate of the Frisch elasticity of

intensive margin is (1/ν) = 0.54.



where ε̂i,t
iid∼ N (0, s2

i ) is the monetary policy shock, φi is the policy smoothing parameter, and φπ,
φx and φgy are response parameters consistent with stability and determinacy in equilibria with
rational expectations in a equilibrium with positive trend inflation. The authors find that reacting
to the observed output growth has two major advantages: (i) it has more stabilizing properties
when the trend inflation is not zero; and (ii) it is empirically more relevant. Based on Coibion and
Gorodnichenko (2011) central estimations, I keep φi = 0.92 and estimate the response parameters
so that the estimated model adjusts to a possible misscalibration and absence of additional shocks.
Since I am focused in inferring su and sa, this strategy is fairy reasonable.
Using Bayesian MCMC estimation, with flat priors and 200000 draws, table 1 reports posterior

means and 95% credible intervals for φπ, φx, φgy, si, and su. For simulations shown in Section 5, I
set su and sa at the posterior means. Since all exercises are focused on optimal policy rules, I did
not consider outcomes under monetary policy shocks.

Table 1: Posterior Distributions
PostMean 95% cred.int.

φπ 1.2283 1.2158− 1.2400
φx 0.0000 0.0000− 0.0000
φgy 0.9918 0.9896− 0.9941
si 0.0017 0.0014− 0.0021
su 0.0269 0.0233− 0.0304

Using the calibration set, note that the steady-state levels of the ZLB probability p̄o and probability-
elasticity of shocks φε increase very fast as the steady state level of the annual nominal interest rate
ı̄ falls towards the ZLB, as depicted in Figure 1. I highlight the fact that p̄o is reference level, for the
expected frequency Epo,t according to which the ZLB binds is highly policy-dependent. In Section
5, I show simulations under different monetary policy frameworks.
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Figure 1: ZLB Probability and Probability-Elasticity

For instance, the observed frequency at which the effective annualized Federal Funds rate is
below 0.15%, which I call the Effective Lower Bound (ELB), from 2006Q1 to 2016Q4 (after the
Great Moderation period) was 41%. During this period, the average Fed Funds rate was 1.19%. In
this context, even though p̄o = 32%, the Standard Optimal policy delivers Epo,t between 43% and
44% depending on the combination of β and π̄ such that ı̄ = 1.19. In a similar exercise, for the larger
sample 1985Q1 to 2016Q4, the average Fed Funds rate was 3.73% and the rate was below the ELB
at 14% of the time. In this context, p̄o = 7.5% and Epo,t ranges between 14% and 16%, depending
on the combination of β and π̄ such that ı̄ = 3.73.



5 Simulations

This section studies the welfare gains and dynamics implied by trend inflation optimal policies
under unconditionally commitment. I perform simulations using Occbin, by Guerrieri and Iacoviello
(2015), to account for the occasionally biding ZLB constraint on the nominal interest rate. Due to
ZLB restrictions, there is no closed form solution to compute the model’s unconditional moments.
Therefore, in order to infer them, I simulate artificial equilibria with 10,000 periods simultaneously
using fixed sequences of exogenous demand and technology shocks, based on the distribution detailed
in the last section.
In the first exercise, I compute welfare gains from using the TIWeB precautionary optimal policy

under unconditionally commitment (PrOP) over the TIWeB standard optimal policy under uncon-
ditionally commitment (StOP), obtained by extending the Nakov (2008) analysis to a trend inflation
economy, and estimated TTrend Inflation Taylor Rule (TayR). I do not compare with the Trend
Inflation optimal policy under discretion, which I derive in Alves (2014), for it is only compatible
with stability and determinacy at very small levels of trend inflation (see Alves (2014) for more
details). In the second exercise, I compare impulse responses to negative demand shocks obtained
under different policy frameworks.

5.1 Policy evaluation

As for studying the welfare gains, I follow Schmitt-Grohe and Uribe (2007) and Alves (2014) by
computing welfare cost rates, in terms of consumption equivalence results, of each optimal monetary
policy framework. The analysis is done in terms of assessing the gains from commitment as trend
inflation rises from 0 percent to 2 percent.11, paralleling the exercises done by Ascari and Ropele
(2007).
I assess the gains from using the PrOP optimal policy under unconditionally commitment against

the alternative StOP optimal policy under unconditionally commitment, considering the welfare cost
rate λ of adopting each specific policy framework. In order to simplify the evaluation, I consider
the TIWeB loss function to compute the unconditional expected value of the second order log-
approximation of the welfare function, under occasionally biding ZLB restrictions, EWt ≈ W̄ −
1
2
V̄

(1−β)
EL̄t, where EL̄t = V ar

(
π̂t − π̂indt

)
+ X̄V ar (x̂t) +

[
E
(
π̂t − π̂indt

)2
+ X̄Ex̂2

t

]
. Note that the

term inside brackets might be relevant as occasionally biding ZLB restrictions induces non-zero values
for E

(
π̂t − π̂indt

)
and Ex̂t.

The welfare cost rate λ is interpreted as a tax rate that must be applied to the steady state output
level Ȳ 0 under the equilibrium with flexible prices (π̄ = 0) in order to the representative household
to be indifferent between this equilibrium and a stochastic one with non-zero trend inflation and
occasionally binding ZLB constraints over the nominal interest rate:

1

(1− β)

[
u
(

(1− λ) Ȳ 0
)
− ῡ0

]
= EWt

Tables 2 and 3 report welfare cost rates λ, for different optimal policy frameworks and different
levels of (annual) real interest rates, r̄ = 2% and r̄ = 1%, as trend inflation rises from π̄ = 0% to π̄ =
2%. The compared policy structures are TIWeB precautionary unconditional commitment (PrOP),
TIWeB standard unconditional commitment (StOP) and TI Taylor Rule (TayR). For benchmark

11If nominal interest rates were allowed to be negative, optimal monetary policy under unconditionally commitment
would fully stabilize the economy under zero trend inflation, and the model would not be disturbed by exogenous
shocks. The reason is that the endogenous trend inflation cost push shock is zero at this level of trend inflation. If
the ZLB is occasionally binding, on the other hand, optimal policy fails to always stabilize the economy. In this case,
even at zero trend inflation, the uconditional variances of inflation and output gap are not simultaneously zero.



purposes, the tables also show the outcome in the ficticious economy where the ZLB constraint is
not at play.

Table 2 - Gains from Precautionary Optimal Policy at r̄ = 2% (β = 0.995)

A) Under ZLB constraints

Steady States
r̄=2%

PrOP
Rates (%)

StOP
Rates (%)

TayR
Rates (%)

π̄ ı̄ p̄o
0 2 21.8
1 3 12.1
2 4 6.0

λ Epo,t
0.05 32.1
0.54 19.5
2.49 12.2

λ Epo,t
0.06 31.4
0.55 18.3
2.54 11.7

λ Epo,t
0.40 0.8
0.84 0.0
2.76 0.0

B) No ZLB constraints

Steady States
r̄=2%

PrOP
Rates (%)

StOP
Rates (%)

TayR
Rates (%)

π̄ ı̄ p̄o
0 2 21.8
1 3 12.1
2 4 6.0

λ Epo,t
0.00 26.9
0.48 18.9
2.40 12.6

λ Epo,t
0.00 28.0
0.48 19.7
2.40 13.1

λ Epo,t
0.35 0.9
0.84 0.0
2.76 0.0

Note: TIWeB precautionary unconditional commitment (PrOP), TIWeB standard

unconditional commitment (StOP), TI Taylor Rule (TayR), welfare loss (λ),
trend inflation (π̄), steady state annual real interest rate (r̄), steady state annual
nominal interest rate (̄ı), steady state probability of hitting the policy rate ZLB
constraint (p̄o), expected policy-based probability of hitting the policy rate ZLB

constraint (Epo,t).

Table 3 - Gains from Precautionary Optimal Policy at r̄ = 1% (β = 0.9975)

A) Under ZLB constraints

Steady States
r̄=1%

PrOP
Rates (%)

StOP
Rates (%)

TayR
Rates (%)

π̄ ı̄ p̄o
0 1 34.8
1 2 21.7
2 3 12.1

λ Epo,t
0.12 52.3
0.59 31.2
2.56 18.9

λ Epo,t
0.13 49.9
0.59 25.0
2.65 19.0

λ Epo,t
0.96 8.9
0.91 0.8
2.78 0.0

B) No ZLB constraints

Steady States
r̄=1%

PrOP
Rates (%)

StOP
Rates (%)

TayR
Rates (%)

π̄ ı̄ p̄o
0 1 34.8
1 2 21.7
2 3 12.1

λ Epo,t
0.00 37.2
0.48 26.8
2.42 18.9

λ Epo,t
0.00 38.1
0.48 28.0
2.42 19.7

λ Epo,t
0.35 11.3
0.84 0.9
2.78 0.0

Note: TIWeB precautionary unconditional commitment (PrOP), TIWeB standard

unconditional commitment (StOP), TI Taylor Rule (TayR), welfare loss (λ),
trend inflation (π̄), steady state annual real interest rate (r̄), steady state annual
nominal interest rate (̄ı), steady state probability of hitting the policy rate ZLB
constraint (p̄o), expected policy-based probability of hitting the policy rate ZLB

constraint (Epo,t).

The tables also compare steady state levels p̄o of the probability of hitting the ZLB with average
probabilities Epo,t obtained under different policy rules. Two lessons are learned from the tables:



(i) if the ZLB constraint occasionally binds, relative gains from precautionary (PrOP) optimal com-
mitment over standard (StOP) optimal commitment increase as trend inflation rises and the real
interest rate falls; (ii) in the ficticious economy where the ZLB constraint is not at play, even though
I obtain the expected result that the StOP optimal policy always dominates, the losses from adoting
the PrOP optimal policy are negligible; (iii) the PrOP optimal policy delivers larger probabilities of
hitting the ZLB, as it finds it optimal to remaining longer at the ZLB even after large negative shocks
have dissipated (see Section 5.2); (iv) even though the taylor Rule delivers much smaller probabilities
of hitting the ZLB, its implyied losses are much larger than those of both optimal policies.

5.2 Impulse Responses

In order to clearly illustrate the role of a precautionary optimal policy under unconditionally
commitment, Figures 2 and 3 depict responses after a one-period (t = 2) negative demand innovation
shocks, with amplitudes varying from εu,t = − (0.5) su to εu,t = − (5.0) su, where again su is the
estimated standard deviation of the demand shock. In all simulations, I consider r̄ = 1% and trend
inflation fixed at π̄ = 2%. Figures 4 and 5 depict the responses after two-periods negative demand
shocks.
At those levels, there are distinct responses differences under the precautionary and standard

optimal policy rules. In each exercise, I compare the responses obtained under the Precautionary
Optimal Policy (8), Standard Optimal Policy, estimated Trend Inflation Taylor Rule (11) and under
the Equilibrium with Flexible Prices without ZLB constraints. In this equilibrium, I assume that the
nominal interest rate adjusts in order to keep the nominal interest rate constant at π̄ = 2%, given
the path of the real interest rate, i.e. Int = Rn

t Π̄.
The figures depict the responses of output Ŷt, annualized inflation rate πt, annualized nominal

interest rate it and the expected probability of hitting the ZLB in the next period Etpo,t+1. Six lessons
are learned from the responses: (i) output losses and inflation falls are smaller under precautionary
(PrOP) optimal commitment over standard (StOP) optimal commitment and Taylor Rule; (ii) the
PrOP policy delays the reduction in the nominal interest rate as the shock hits, making more room
for policy effectiveness, and delays even further the nominal rate return to normal levels after the
shock dissipates; (iii) in line with the conclusions obtained in the analyses from the last section, the
PrOP optimal policy deliver larger probabilities of hitting the ZLB, as it finds it optimal to remaining
longer at the ZLB even after the negative shocks have dissipated; (iv) when not binded, the interest
rate response under the PrOP policy tends to mimic that of the nominal interest rate under the
equilibrium with flexible prices; (v) even though the Taylor Rule generates very low probability of
hitting the ZLB, it generates costs in terms of larger declines in output and inflation when compared
to the PrOP optimal policy; (vi) under large enough negative demand shocks, the Taylor Rule starts
to dominate the StOP optimal policy.
The second and third lessons characterizes the precautionary nature of PrOP policies. In this

exercise, the resulting optimal forward guidance structure depends on the size of the negative shock.
For small shocks, which prevents the ZLB to actually bind, both optimal policy frameworks deliver
very similar results in terms of output and inflation. Indeed, they virtually succeed in bringing price
stability. For larger negative shocks, the differences become very clear, as the precautionary nature
of PrOP dominates.
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Figure 2: Responses to a one-period negative demand shocks of 0.5 (A) and 1.0 (B) Std. Dev.
Note: r̄ = 1, (A) εu,t = −(0.5)su, (B) εu,t = −(1.0)su, Stars show when shocks hit. Taylor Rule

(black circles), Standard commitment (red dash-dotted), Precautionary commitment (blue line),

Equilibrium with Flexible Prices with no ZLB Constraints and π̄ = 2 (black dotted)
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Figure 3: Responses to a one-period negative demand shock of 1.5 (A) and 5.0 (B) Std. Dev.
Note: r̄ = 1, (A) εu,t = −(1.5)su, (B) εu,t = −(5.0)su, Stars show when shocks hit. Taylor Rule

(black circles), Standard commitment (red dash-dotted), Precautionary commitment (blue line),

Equilibrium with Flexible Prices with no ZLB Constraints and π̄ = 2 (black dotted)
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Figure 4: Responses to a two-period negative demand shock of 0.5 (A) and 1.5 (B) Std. Dev.
Note: r̄ = 1, (A) εu,t = −(0.5)su, (B) εu,t = −(1.0)su, Stars show when shocks hit. Taylor Rule

(black circles), Standard commitment (red dash-dotted), Precautionary commitment (blue line),

Equilibrium with Flexible Prices with no ZLB Constraints and π̄ = 2 (black dotted)
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Figure 5: Responses to a two-period negative demand shock of 5.0 Std. Dev.
Note: r̄ = 1, εu,t = −(5.0)su, Stars show when shocks hit. Taylor Rule (black circles),

Standard commitment (red dash-dotted), Precautionary commitment (blue line),

Equilibrium with Flexible Prices with no ZLB Constraints and π̄ = 2 (black dotted)

6 Conclusions

I derive a precautionary optimal policy under unconditionally commitment and occasionally
binding ZLB constraint on the nominal interest rate, for a standard New Keynesian model with
continously-distributed demand and technology shocks. I depart from the literature by directly
considering the unconditional probabilities of hitting the ZLB constraint and avoiding the issue of
modelling transition probabilities of entering and leaving binding states.
The optimal policy directly internalizes a precautionary behavior arising at occasionally binding

ZLB constraint. My approach allows for keeping the direct precautionary behavior even under the
first-order (loglinearization) approximation of the model equilibrium.
Finally, I show that the precautionary optimal policy dominates, in welfare terms, the standard

optimal policy occasionally binding ZLB constraints (see e.g. Nakov (2008)). In addition, I find
that optimal precautionary responses to negative demand shocks induces a slower reduction in the
nominal rate as the shock hits, making more room implementing monetary policy in the future. As
the negative shock dissipates, optimal precautionary policy takes longer to return the rate to normal
values than what the standard optimal policy prescribes. As a consequence, optimal precautionary
policy induces the probability of hitting the ZLB to be higher than what the standard optimal policy
implies.

References

Alves, S. A. L. (2014). Lack of divine coincidence in New Keynesian models. Journal of Monetary
Economics 67 (C), 33—46.

Ascari, G. (2004). Staggered Prices and Trend Inflation: Some Nuisances. Review of Economic
Dynamics 7 (3), 642—667.



Ascari, G. and T. Ropele (2007). Optimal monetary policy under low trend inflation. Journal of
Monetary Economics 54 (8), 2568—2583.

Ascari, G. and A. M. Sbordone (2013). The macroeconomics of trend inflation. Staff Reports 628,
Federal Reserve Bank of New York.

Bauer, M. D. and G. D. Rudebusch (2016). Why Are Long-Term Interest Rates So Low? FRBSF
Economic Letter ([object Attr]).

Calvo, G. A. (1983). Staggered prices in a utility-maximizing framework. Journal of Monetary
Economics 12 (3), 383—398.

Chetty, R., A. Guren, D. Manoli, and A. Weber (2011). Are Micro and Macro Labor Supply Elas-
ticities Consistent? A Review of Evidence on the Intensive and Extensive Margins. American
Economic Review 101 (3), 471—75. 00150.

Cogley, T. and A. M. Sbordone (2008). Trend Inflation, Indexation, and Inflation Persistence in the
New Keynesian Phillips Curve. American Economic Review 98 (5), 2101—26. 00303.

Coibion, O. and Y. Gorodnichenko (2011). Monetary Policy, Trend Inflation, and the Great Moder-
ation: An Alternative Interpretation. American Economic Review 101 (1), 341—70.

Coibion, O., Y. Gorodnichenko, and J. Wieland (2012). The Optimal Inflation Rate in NewKeynesian
Models: Should Central Banks Raise Their Inflation Targets in Light of the Zero Lower Bound?
Review of Economic Studies 79 (4), 1371—1406.

Cooley, T. F. and E. C. Prescott (1995). Economic growth and business cycles. In Frontiers of
Business Cycles Research, pp. ed. Thomas Cooley, Chapter 1, 1—38. Princeton University Press.
01577.

Damjanovic, T., V. Damjanovic, and C. Nolan (2008). Unconditionally optimal monetary policy.
Journal of Monetary Economics 55 (3), 491—500.

Dixit, A. K. and J. E. Stiglitz (1977). Monopolistic Competition and Optimum Product Diversity.
American Economic Review 67 (3), 297—308. 09063.

Eggertsson, G. B. and M. Woodford (2003a). Optimal Monetary Policy in a Liquidity Trap. NBER
Working Paper 9968, National Bureau of Economic Research, Inc.

Eggertsson, G. B. and M. Woodford (2003b). The Zero Bound on Interest Rates and Optimal
Monetary Policy. Brookings Papers on Economic Activity 34 (1), 139—235.

Guerrieri, L. and M. Iacoviello (2015). OccBin: A toolkit for solving dynamic models with occasion-
ally binding constraints easily. Journal of Monetary Economics 70 (C), 22—38.

Laubach, T. and J. C. Williams (2015). Measuring the natural rate of interest redux. Working Paper
Series 2015-16, Federal Reserve Bank of San Francisco.

Nakov, A. (2008). Optimal and Simple Monetary Policy Rules with Zero Floor on the Nominal
Interest Rate. International Journal of Central Banking 4 (2), 73—127.

Ravenna, F. and C. E. Walsh (2008). Vacancies, unemployment, and the Phillips curve. European
Economic Review 52 (8), 1494—1521. 00100.



Ravenna, F. and C. E. Walsh (2011). Welfare-Based Optimal Monetary Policy with Unemploy-
ment and Sticky Prices: A Linear-Quadratic Framework. American Economic Journal: Macroeco-
nomics 3 (2), 130—62.

Schmitt-Grohe, S. and M. Uribe (2007). Optimal simple and implementable monetary and fiscal
rules. Journal of Monetary Economics 54 (6), 1702—1725.

Smets, F. and R. Wouters (2007). Shocks and Frictions in US Business Cycles: A Bayesian DSGE
Approach. American Economic Review 97 (3), 586—606.

Woodford, M. (2003, August). Interest and Prices: Foundations of a Theory of Monetary Policy.
Princeton University Press. 07071.

Yi, K.-M. and J. Zhang (2016). Real Interest Rates over the Long Run. Economic Policy Paper
16-10, Federal Reserve Bank of Minneapolis.

Yun, T. (2005). Optimal Monetary Policy with Relative Price Distortions. American Economic
Review 95 (1), 89—109.

A Deriving the probability of hitting the ZLB

Using the Euler equation and the marginal utility definition, I rewrite the natural probability pno,t
as

pno,t = P
(
un′t ≤ βEt

(
un′t+1

Π̄

))
= P

(
εt (Y n

t )−σ ≤ βEt

(
εt+1

(
Y n
t+1

)−σ
Π̄

))

= P
(

(εt)
ω

(ω+σ) (At)−
σ(1+ω)
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Π̄
Et
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ρu
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ω
(ω+σ) (Aρat εa,t+1)
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(ω+σ)

))
= P
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ω(1−ρu)
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−ωρu(1−ρu)
(ω+σ) (At−1)

σ(1+ω)ρa(1−ρa)
(ω+σ)

)

Let εua,t ≡ (εu,t)
ω(1−ρu)
(ω+σ) (εa,t)

−σ(1+ω)(1−ρa)
(ω+σ) denote the aggregate shock. If εu,t

iid∼ LN (0, s2
u) is indepen-

dent of εa,t
iid∼ LN (0, s2

a), where s
2
u and s

2
a are dispersion parameters, then εua,t

iid∼ LN (0, s2
ua), where

s2
ua ≡

(
ω(1−ρu)
(ω+σ)

)2

s2
u+
(
σ(1+ω)(1−ρa)
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a. It implies that p

n
o,t = Fua
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β
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)
.

Conditional on the expected paths of output and inflation in any equilibrium with trend inflation,
po,t satisfies:

po,t = P
(
u′t ≤ βEt

(
u′t+1

Πt+1

))
= P
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