Macroeconomic Performance under Evolutionary Dynamics of Employee Profit Sharing

Gilberto Tadeu Lima
Department of Economics
University of São Paulo, Brazil
giltadeu@usp.br

&

Jaylson Jair da Silveira
Department of Economics and International Relations
Federal University of Santa Catarina, Brazil
jaylson.silveira@ufsc.br

Abstract: This paper explores implications for economic growth driven by effective demand of income distribution featuring the possibility of profit sharing with workers. Firms choose to compensate workers with a base wage or a share of profits on top of this base wage. In accordance with robust empirical evidence, workers in sharing firms have higher productivity than workers in non-sharing firms. The distribution of employee compensation strategies and labor productivity across firms is evolutionarily time-varying. Two major results carrying relevant theoretical and policy implications are obtained. First, heterogeneity in employee compensation strategies across firms may emerge as a long-run equilibrium outcome. Second, in the long run, a higher frequency of profit-sharing firms does not necessarily generate higher economic growth.

Keywords: economic growth, income distribution, profit sharing, evolutionary dynamics.

Resumo: Este artigo aborda implicações para o crescimento econômico guiado pela demanda efetiva de distribuição de renda ter a possibilidade de compartilhamento de lucros com os trabalhadores. As firmas escolhem remunerar os trabalhadores com um salário base ou com uma participação nos lucros além desse salário base. Conforme evidência empírica robusta, a produtividade do trabalho é maior nas firmas que adotam compartilhamento de lucros que naquelas que não o adotam. A distribuição das estratégias de remuneração e da produtividade média do trabalho na população de firmas varia ao longo do tempo de maneira evolucionária. O artigo deriva dois principais resultados com relevantes implicações teóricas e de política pública. Primeiro, a heterogeneidade nas estratégias de remuneração entre as firmas pode ser um equilíbrio de longo prazo estável. Segundo, no equilíbrio de longo prazo, uma maior frequência de firmas que adotam compartilhamento de lucros não necessariamente resulta em maior crescimento econômico.

Palavras-chave: crescimento econômico, distribuição de renda, compartilhamento de lucros, dinâmica evolucionária.

JEL Codes: E12, E25, J33, O40.

Classificação Anpec: Área 6 – Crescimento, Desenvolvimento Econômico e Instituições.

* We are grateful to Mark Setterfield, Amitava Krishna Dutt and Peter Skott for helpful discussions on earlier drafts of this paper. We take responsibility for any remaining errors. We are also grateful to CNPq (Brazil) and FAPESP (Brazil) for providing us with research funding.
Introduction

Employee profit sharing has experienced an increasing (even if fluctuating) popularity in some advanced economies in the last few decades (D’Art and Turner, 2004, Kruse et al., 2010). From a longer-term perspective, there have been rising and falling waves of interest in profit sharing since their origin in the 19th century (Mitchell et al., 1990, Blasi et al., 2013).

The main drive behind a firm’s offering of profit sharing to workers is that connecting workers’ earnings to the profits of the firm is believed in theory to induce workers to increase commitment, effort and other attitudes leading to their higher productivity. In fact, attitude surveys find that employers and employees usually believe that profit sharing helps improve firm performance in several dimensions (Weitzman and Kruse, 1990, and Blasi et al., 2010).

Other compensation schemes through which workers’ earnings depend on the firm’s performance (or work group) are gain sharing, employee ownership and stock options. Profit-sharing plans themselves vary greatly, and some major ways in which they differ concern what is shared (e.g., total profits or profits above some target or threshold level), how and when sharing is made (e.g., in cash or company stocks, in a deferred or non-deferred way) and with whom sharing is made (e.g., directly to workers or to some workers’ retirement or pension plan). However, there is survey evidence that non-deferred and in cash profit sharing is ranked first by employees as a motivation device (Blasi et al., 2010).

There is considerable empirical evidence that profit sharing raises labor productivity. Although the estimated magnitude of the productivity gain varies from study to study, it is often non-negligible. Weitzman and Kruse (1990) apply meta-analysis to sixteen studies to find that the productivity gain of profit sharing is positive at infinitesimal significance levels. Doucouliagos (1995) applies meta-analysis to forty-three studies to find that profit sharing is positively associated with productivity. Conyon and Freeman (2004), using UK data, find that profit-sharing firms tend to outperform other firms in both productivity and financial performance. D’Art and Turner (2004) use data for 11 European countries to find that profit sharing is positively associated with productivity and profitability, while Kim (1998), using U.S. data, finds that albeit profit sharing raises labor productivity, profits do not rise, as gains from profit sharing are cancelled out by increased labor costs. In a quasi-experimental study, Peterson and Luthans (2006) randomly assigned profit-sharing plans at 3 of 21 establishments within a U.S. firm, finding that productivity and profits rose in the sharing establishments relative to the control group.

Given this empirical evidence, we set forth a dynamic model of capacity utilization and economic growth, in which income distribution features profit sharing. Unlike in a related approach in Lima (2010), firms behave heterogeneously as regards employee compensation strategy. Firms choose to compensate workers with either only a base wage or a share of profits on top of this base wage. In line with the empirical evidence just reported, workers hired by profit-sharing firms have a higher productivity than their counterparts in base-wage firms. Meanwhile, unlike in Lima (2012), the heterogeneity in compensation strategies and the productivity gain that accrues to profit-sharing firms are not parametric constants, but co-evolve endogenously through an evolutionary process. Hence, our model is well fitted to explore possible explanations for the evidence using U.K. data that firms switch modes of employee compensation frequently, with the gross changes in modes being far more common than the net changes, which suggests that firms have trouble optimizing and that the transaction costs of switching are relatively low (Bryson and Freeman, 2010). Also, we explore the implications of the evolutionary dynamics of the distribution of compensation strategies and the productivity gain that accrues to sharing firms for effective demand, and thereby for capacity utilization and growth. Given the paramount role of effective demand and income distribution in demand-led economics, it is fitting to explore macroeconomic implications of profit sharing in a model that conforms to essential tenets of this tradition.¹

¹ Weitzman (1985) claims that profit sharing can deliver full employment with low inflation. If part of workers’ total compensation is shared profits, so that the base wage is lower, the marginal cost of labor is lower and firms will be willing to hire more workers. As the marked up price is lower, a real balance effect raises aggregate demand and hence desired output. Clearly, Weitzman (1985) ignores effective demand problems and implicitly sees involuntary unemployment as due to downward wage inflexibility (Davidson, 1986-87, Rothschild, 1986-87). In our model, the proportion of sharing firms and the average productivity are endogenously time-varying, and we explore implications of profit sharing for macroeconomic performance driven by effective demand.
The remainder of this paper is organized as follows. Section 2 describes the structure of the model and investigates its behavior in the ultra-short run. Section 3 explores the behavior of the model in the short run, while Section 4 investigates the coupled evolutionary dynamics of the distribution of compensation modes across firms and the productivity gain that accrues to profit-sharing firms. This section also explores implications of such coupled evolutionary dynamics for income distribution and hence for aggregate effective demand, capacity utilization and economic growth. The final section summarizes the main conclusions reached along the way.

2. Structure of the model and its behavior in the ultra-short run

The economy is closed and without government activities, producing a single (homogeneous) good for both investment and consumption. Production is carried out by a large (and fixed) population of imperfectly-competitive firms, which combine two (physically homogeneous) factors of production, capital and labor, through a fixed-coefficient technology. Firms produce (and hire labor) according to effective demand, which is assumed to be insufficient for any of them to produce at full capacity at prevailing prices.

An individual firm chooses between two employee compensation strategies: it either pays workers only a real base wage \(v \) (non-sharing strategy) or pays them this real base wage and a share of real profits \(\delta \) (profit-sharing strategy). In a given period there is a proportion \(\lambda \in [0,1] \subseteq \mathbb{R} \) of sharing (or type \(s \)) firms, while the remaining proportion, \(1-\lambda \), is composed of non-sharing (or type \(n \)) firms. In accordance with the empirical literature reported earlier, a profit-sharing firm is willing to pay such compensation strategy because the resulting labor productivity is strictly higher than otherwise. Productivity is homogeneous across workers hired by firms playing a given strategy. Since the real base wage is assumed to be the same under both compensation strategies, a worker hired by a sharing firm will receive a higher total real compensation than a worker hired by a non-sharing firm along the economically meaningful domain given by strictly positive profits for sharing firms.\(^2\)

To keep focus on the dynamics of the distribution of compensation strategies and its implications for income distribution, capacity utilization and economic growth, we simplify matters by assuming that the real base wage, \(v \), and the profit-sharing coefficient, \(\delta \), remain constant over time. The distribution of compensation strategies across firms, \((\lambda, 1-\lambda) \), which is given in both the ultra-short run and the short run as a result from previous dynamics, changes beyond the short run according to an evolutionary dynamics (the so-called replicator dynamics). In the ultra-short run, for given values of the real base wage, profit-sharing coefficient, productivity differential and frequency distribution of compensation strategies, individual markups vary so as to ensure that individual prices are equalized. Over time, the co-evolution of the distribution of compensation strategies and the productivity differential, by leading to changes in the average markup and hence in the wage share in income, causes changes in aggregate effective demand and therefore in the short-run equilibrium values of capacity utilization and economic growth.

Formally, we define the productivity differential as:

\[
\alpha \equiv \frac{d_s}{d_n},
\]

where \(d_i = X_i / L_i \) denotes labor productivity in firms of type \(i = s, n \), \(X_i \) is total output of firms of type \(i = s, n \), and \(L_i \) is total employment of firms type \(i = s, n \). As regards pricing behavior, we assume that established firms face a binding limit-price constraint, \(\bar{P} \), arising from the purpose of forestalling entry by potential competitors.\(^3\) This exogenously given constant price, which is herein normalized to one, is set as a markup over nominal unit labor costs. Hence, the following condition holds in the ultra-short run:

\(^2\) Empirical evidence shows that profit sharing has a meaningful effect on worker total compensation (Kruse et al., 2010). In fact, Capelli and Neumark (2004) find that total labor costs exclusive of the sharing component do not fall significantly in pre/post comparisons of firms that adopt profit sharing. This suggests that profit sharing tends to come on top of, rather than in place of, a base wage.

\(^3\) The prolific approach to entry and limiting pricing was pioneered by Bain (1949) and Harrod (1952).
where $z_s \in \mathbb{R}_{++}$ and $z_n \in \mathbb{R}_{++}$ are, respectively, the markups applied by sharing and non-sharing firms, and $v \in \mathbb{R}_{++}$ denotes, therefore, both the nominal and the real base wage. For further simplicity, we also normalize labor productivity in non-sharing firms, a_n, to one, so that $a_s = \alpha > 1$ in (1), which requires further assuming that $v < a_n = 1 < a_s$.

Having chosen to follow a profit-sharing strategy, a firm has to further decide how it will use the corresponding productivity differential. The specification in (2) assumes that a sharing firm uses its productivity differential to apply a higher markup than non-sharing firms, while charging the same price.\footnote{Another alternative would be for sharing firms to use their productivity differential to charge a lower price than non-sharing firms while applying the same markup. Yet another possibility would be for sharing firms to use their productivity differential to both raise their markup and improve their price competitiveness. We abstract from these other possibilities by assuming that firms face a kinked demand curve (Hall and Hitch (1939), Sweezy (1939)), the market price for which is stable. This price is sustained over time by each firm’s fear that, if it undercuts, the other firms will do the same. A firm has no incentive to charge more than such price as it fears that the other firms will not do the same.} We could assume that not all sharing firms make the same decision with respect to how to use their (common) productivity differential given by $\alpha > 1$, but we simplify matters by assuming that all sharing firms behave alike in that respect. Moreover, given that such productivity differential varies over time with the distribution of compensation strategies across firms, as described in the next section, the average markup given by $z \equiv \lambda z_s + (1 - \lambda) z_n$ also varies over time. Therefore, the ultra-short-run equilibrium values of the individual markups can be obtained by combining (1) and (2):

$$z^*_s = \frac{\alpha}{v} - 1$$
(3)

and:

$$z^*_n = \frac{1}{v} - 1$$
(4)

from which it follows that $z^*_s > z^*_n$ for any $\alpha \in (1, \infty) \subset \mathbb{R}$. A profit-sharing firm can be intuitively described as a firm willing to bet on the possibility of obtaining a productivity differential, α, which is high enough to allow it to set a markup, z_s, which is sufficiently higher than the (exogenously given) markup set by a non-sharing firm, z_n, while charging the same price (and therefore without harming its ability to sell as much output as a non-sharing firm). Moreover, a sharing firm expects this markup differential to be high enough to allow it to make at least as much (and preferably more) profits (net of shared profits) than a non-sharing firm. As explored in Section 4, though, the resulting productivity differential may fall short of the level required for the profit-sharing bet to prove successful.

Using (1), the total real profits of sharing and non-sharing firms are, respectively:

$$R_s \equiv X_s - v L_s = \left(1 - \frac{v}{\alpha}\right) X_s$$
(5)

and:

$$R_n \equiv X_n - v L_n = (1 - v) X_n.$$
(6)

Using (5) and (6), the shares of real profit in real output of sharing and non-sharing firms in the ultra-short-run equilibrium are given, respectively, by:

$$\pi^*_s \equiv \frac{R_s}{X_s} = 1 - \frac{v}{\alpha}$$
(7)

and:

$$\pi^*_n \equiv \frac{R_n}{X_n} = 0.$$
(8)

\[\pi^*_n \equiv \frac{R_n}{X_n} = 1 - \nu. \]

The profit share expression in (7) denotes the proportion of gross profits in the real output of sharing firms, since an exogenously given fraction of such profits, given by \(\delta \in (0,1) \subset \mathbb{R} \), is shared with workers. Using (7), the net unit return of sharing firms in the ultra-short-run equilibrium is given by:

\[\pi^*_s \equiv \frac{(1-\delta)R_s}{X_s} = (1-\delta) \left(1 - \frac{\nu}{\alpha} \right), \]

Using (8) and (9), the ultra-short-run equilibrium value of the average net profit share can be expressed as:

\[\pi^* = \lambda \pi^*_s + (1-\lambda)\pi^*_n = \lambda (1-\delta) \left(1 - \frac{\nu}{\alpha} \right) + (1-\lambda)(1-\nu). \]

As explained in the next section, firms accumulate capital at the same rate, which implies that the aggregate capital stock, \(K \), remains uniformly distributed across firms. It then follows that:\(^5\)

\[\frac{K_s}{\lambda} = \frac{K_n}{1-\lambda} = K, \]

where \(K_i \) is the total capital stock of firms of type \(i = s,n \). Given (10), it follows that the proportion of the aggregate capital stock that is uniformly available to the firms of each type is proportional to the share of each type in the population of firms, that is, \(K_s / K = \lambda \) and \(K_n / K = 1-\lambda \).

Meanwhile, given that prices are equalized across firms, aggregate effective demand is uniformly distributed not only across firms, but across compensation strategies as well. Thus, capacity utilization is also equalized across compensation strategies:

\[u_s = u_n = u = \frac{X}{K}, \]

where \(u_i \equiv X_i / K_i \) is a proxy for the degree of capacity utilization of type \(i = s,n \) firms, while \(u \) denotes average capacity utilization and \(X \) average output.\(^6\)

Using (5), (6), (7), (8), (11) and (12), the (gross) profit rates of sharing and non-sharing firms in the ultra-short-run equilibrium can then be expressed as follows:

\[r^*_s \equiv \frac{R_s}{K_s} = \left(1 - \frac{\nu}{\alpha} \right) \frac{X_s}{K_s} = \pi^*_s u; \]

and:

\[r^*_n \equiv \frac{R_n}{K_n} = (1-\nu) \frac{X_n}{K_n} = \pi^*_n u. \]

Using (9) and (13), the net profit rate of sharing firms in the ultra-short-run equilibrium is then given by:

\[^5\] The meaning of the implied assumption (11) can be explained as follows. Let \(F \) be the total measure of firms in the economy and \(F_s \) the measure of sharing firms. As the aggregate capital stock is uniformly distributed across firms, it follows that \(\frac{K_s}{F_s} = \frac{K_n}{F-F_s} = \frac{K}{F} \). By definition, \(\lambda = \frac{F_s}{F} \), so we obtain (11) by multiplying both sides of these equalities by \(F \).

\[^6\] Therefore, we are assuming that firms are also homogeneous as regards the ratio of capital to full-capacity output, which is an exogenously given constant.
Therefore, using (14) and (15), the ultra-short-run equilibrium value of the average net profit rate can be expressed as:

\[
r^* = \lambda r^* + (1 - \lambda) r_n^* = \left[\lambda (1 - \delta) \left(1 - \frac{\nu}{\alpha} \right) + (1 - \lambda) (1 - \nu) \right] u.
\]

3. Behavior of the model in the short run

We have assumed earlier that the population of firms, \(F\), the (limit-)price level, \(\bar{P}\), the real base wage, \(\nu\), the labor productivity and the markup in non-sharing firms, \(a_n\) and \(z_n\), respectively, and the profit-sharing coefficient, \(\delta\), all remain constant over time. The short run period \(t\) is defined as a time frame in which the aggregate capital stock, \(K_t\), the labor supply, \(N_t\), the productivity differential of profit-sharing firms, \(a_{s,t} = \alpha_t\) (and hence their corresponding markup differential, \(z_{s,t} / z_n\)), the distribution of compensation strategies across firms, \(\lambda_t\), and therefore income distribution measured by the average profit share, \(\pi_t\), can all be taken as predetermined by previous dynamics.\(^7\) The existence of excess aggregate (and individual) capacity ensures that aggregate (and individual) output will adjust to remove any excess aggregate (and individual) demand or supply, so that in short-run equilibrium, net aggregate savings, \(S_t\), are equal to aggregate desired investment, \(I^d_t\).

The economy is inhabited by two classes, capitalists who own the firms and workers. Workers provide labor and earn a base wage income, when they work for non-sharing firms. Workers in sharing firms also receive a share of the latter’s profit income, which is the entire surplus over the respective base wage bill. We assume that workers’ total compensation is all spent on consumption, while capitalists homogeneously save a fraction, \(\gamma \in (0,1) \subset \mathbb{R}\), of their net profit income. Using (11)-(15), net aggregate savings as a proportion of the capital stock at period \(t\) can be expressed as follows:

\[
S_t = \gamma \left[\left(1 - \delta \right) R_{s,t} + R_{a,t} \right] = \gamma \left[\lambda_t \pi_t^* u_{s,t} + (1 - \lambda_t) \pi_t^* u_{n,t} \right] = \gamma \left[\lambda_t \pi_t^* + (1 - \lambda_t) \pi_t^* \right] u_t.
\]

For simplicity, we assume that firms behave alike as regards investment. Reasonably, firms’ desired investment depends on their expected profits (due to profitability-type effects) and demand-driven output (due to accelerator-type effects). But when an individual firm makes and implements (at the same period, for simplicity) its investment plans, it is uncertain as to what worker compensation strategy it (or, for that matter, any other firm) will be playing at each period of the relevant future. In fact, the replicator dynamics that drives the frequency distribution of compensation strategies across firms (to be detailed in the next section) takes firms as having limited and localized knowledge as to the system as a whole. Consequently, it is reasonable to assume that the desired investment of an individual firm varies positively with its expectation of the average levels of the profit share and capacity utilization.

Formally, average desired capital accumulation at period \(t\), which is aggregate desired investment as a proportion of the aggregate capital stock, is given by:

\[
\frac{I^d_t}{K_t} = \beta_1 \pi_t^* + \beta_2 u_t^*.
\]

\(^7\) Since in the next section we explore the behavior of the economy in the transition from the short to the long run, thereafter we attach a subscript \(t\) to all the short-run variables (be they endogenous or predetermined). Therefore, in the short run we assume that the equilibrium values of the ultra-short-run variables are always attained.
where π^E_i and u^E_i denote, respectively, the expected average levels of the profit share and capacity utilization by any individual firm, whereas $\beta_1 \in \mathbb{R}_{++}$ and $\beta_2 \in \mathbb{R}_{++}$ are parametric constants. The time index of π^E_i and u^E_i refers to the period at which the expectation about the relevant future is formed. The specification in (18) is an expectations-augmented version of the desired capital accumulation function put forward in Margin and Bhaduri (1990), the latter from which it is known that the resulting output growth can vary either positively or negatively with the (average) profit share depending on the relative strength of the several effects at play. We could assume that firms (even when playing the same compensation strategy) have heterogeneous expectations concerning the average values of the profit share and capacity utilization in the relevant future. However, we postulate that, facing an uncertain future, firms uniformly proxy such expected average levels by their respective current average levels. In our model, a given share of the aggregate profit income accrues to workers as profit sharing, though. Thus, it is reasonable to assume that firms proxy the expected average profit share by the current average net profit share, which is given by (10).

Assuming in (18) that $\pi^E_i = \pi^*_i$ (along with using (10)) and $u^E_i = u_i$, we obtain the following expression for the average desired rate of capital accumulation:

$$\frac{I^d_t}{K_t} = \beta_1 \pi^*_i + \beta_2 u_i.$$

(19)

Finally, by substituting (17) and (19) in the goods market equilibrium condition given by $S_i / K_i = I^d_t / K_t$ and using (10), we obtain the short-run equilibrium capacity utilization:

$$u^*_i(\alpha_i, \lambda_i) = \frac{\beta_1 \left[\lambda_i \pi^*_i(\alpha_i, \lambda_i) + (1 - \lambda_i) \pi^*_n \right] - \beta_2}{\gamma \left[\lambda_i \pi^*_i(\alpha_i, \lambda_i) + (1 - \lambda_i) \pi^*_n \right]}. $$

(20)

Note that the short-run equilibrium capacity utilization depends on parametric constants along with the productivity differential, α_i, and the distribution of compensation strategies, λ_i, which are predetermined in the short run and co-evolve in the transition from the short to the long run (as described in the next section). 8

We can substitute (20) in (17) to obtain the short-run equilibrium output growth rate:

$$g^*_t(\alpha_i, \lambda_i) = \gamma \left[\lambda_i \pi^*_i(\alpha_i, \lambda_i) + (1 - \lambda_i) \pi^*_n \right] u^*_i(\alpha_i, \lambda_i). $$

(21)

Hence, the short-run equilibrium output growth also depends on parametric constants along with the productivity differential, α_i, and the distribution of compensation strategies, λ_i.

4. Behavior of the model in the long run

In the long run we assume that the ultra- and short-run equilibrium values of the income distribution, capacity utilization and economic growth are always attained, with the economy moving towards the long run due to changes in the aggregate stock of capital, K, the supply of available labor, N, the productivity differential, α, and the distribution of compensation strategies, λ. In order to sharpen focus on the coupled dynamics of the distribution of compensation strategies and the productivity differential, we assume that the supply of available labor grows endogenously at the same rate as the capital stock. 9

8 We assume that $\gamma \left[\lambda_i \pi^*_i(\alpha_i, \lambda_i) + (1 - \lambda_i) \pi^*_n \right] - \beta_2 > 0$ for all $\alpha_i \in (1, \infty) \subset \mathbb{R}$ and $\lambda_i \in [0,1] \subset \mathbb{R}$, which is the standard Keynesian stability condition in effective demand-driven models like the one set forth in this paper. This means that $u^*_i(\alpha_i, \lambda_i)$ is positive and stable if average savings are more responsive than average desired investment to changes in average capacity utilization, which in turn requires that the denominator of the expression in (20-a) is positive.

9 Consequently, the constancy of the productivity differential and the distribution of compensation strategies in the long-run equilibrium guarantee the constancy of both the average labor productivity and the average rate of
Let us start by deriving the dynamics of the productivity differential. At a given (short-run) period t there is a fraction $\lambda_t \in [0,1] \subset \mathbb{R}$ of the population of firms, which may vary from one period to the next one, adopting the profit-sharing strategy. The remaining fraction, $1 - \lambda_t$, is made up of firms that pay only the base wage. Let $y_{t,s} \equiv \bar{y}_t y_{s,t} + (1 - \lambda_t) y_{n,t}$ be the average real earnings of workers at period t, where $y_{s,t} \equiv v + \delta R_{s,t}/L_{s,t}$ and $y_{n,t} \equiv v$ are the real earnings of a worker hired by a profit-sharing firm and a worker hired by a non-sharing firm in period t, respectively. Consequently, the differential between the higher real earnings and the average real earnings can be written as $y_{s,t} - \bar{y}_t = (1 - \lambda_t) \delta R_{s,t}/L_{s,t}$ for all $\lambda_t \in [0,1] \subset \mathbb{R}$. In line with the empirical evidence reported earlier, we assume that the extent to which productivity in profit-sharing firms is greater than productivity in non-sharing firms varies positively with the relative real earnings differential given by $y_{s,t} - \bar{y}_t$. Formally, we consider the following productivity differential function:

$$\alpha_{t+1} = f(y_{s,t} - \bar{y}_t) = f(1 - \lambda_t) \delta R_{s,t}/L_{s,t})$$

where $f'(\cdot) > 0$ and $f''(\cdot) < 0$ for all differential $(y_{s,t} - \bar{y}_t) \subset \mathbb{R}$. Moreover, we assume that

$$\lim_{(y_{s,t} - \bar{y}_t) \to \infty} f'(y_{s,t} - \bar{y}_t) = 0.$$

Hence, in line with the empirical evidence that the productivity gains arising from profit sharing are not unlimited, the productivity differential in (22) not only increases at a decreasing rate, but it also tends to become insignificant for very large values of the relative real earnings differential.\(^{10}\) We can use (5) to re-write (22) as follows:

$$(22-a) \quad \alpha_{t+1} = f(\delta(1 - \lambda_t)(\alpha_t - v)).$$

As re-written in (22-a), the productivity differential function has an intuitive interpretation. Given that α_t is the output per worker of a sharing firm and v is the respective unit cost of labor, it follows that $\alpha_t - v$ is the profit per worker of a sharing firm and $\delta(\alpha_t - v)$ is the amount of profit per worker of a sharing firm which is shared with its workers. Hence, given α_t and λ_t, the next-period productivity differential varies positively with the profit-sharing coefficient and negatively with the base wage. Meanwhile, given α_t, v and δ, the next-period productivity differential increases with $1 - \lambda_t$, the proportion of firms playing the non-sharing strategy in a given period, which is an indicator of the prospects of not receiving any shared profits in the next period. Since an increase in $1 - \lambda_t$ acts as an incentive on workers in profit-sharing firms in the next period to provide a higher productivity differential, it follows that $\delta(1 - \lambda_t)(\alpha_t - v)$ reflects how valuable it is to work for a sharing firm.

In fact, note from (22-a) that $\partial \alpha_{t+1}/\partial \lambda_t = -\delta(\alpha_t - v) f'(\delta(1 - \lambda_t)(\alpha_t - v)) < 0$ for all $\lambda_t \in [0,1] \subset \mathbb{R}$ and for any $\alpha_t > v$ (recall that the latter condition was assumed earlier to ensure a strictly positive markup for sharing firms in (3)). The greater the proportion of sharing firms in a given period, the smaller the productivity differential between sharing and non-sharing firms in the next period. One firm’s decision to play the profit-sharing strategy in a given period, by reducing $\delta(1 - \lambda_t)(\alpha_t - v)$ for a given α_t, makes it less valuable to workers to be employed by a sharing firm in the next period and hence has a negative payoff externality on all other sharing firms. Consequently, there is strategic substitutability in the firms’ choice of compensation.

\(^{10}\) In the meta-analyses in Weitzman and Kruse (1990) and Doucouliagos (1995), the size of the estimated effect of profit sharing on labor productivity is usually on the order of 3 to 7 percent.
mechanism. Meanwhile, if all firms follow the sharing strategy \((\lambda_i = 1)\), the relative real earnings differential given by \(y_{t,s} - \overline{y}_i = \delta(1 - \lambda_i)(\alpha_i - v)\) vanishes. In this case, given that the productivity is uniform across all firms, and should be higher than the average productivity when all firms pay only the base wage, which we have normalized to one, we further assume that \(f(0) > 1\). Instead, if all firms play the non-sharing strategy \((\lambda_i = 0)\), the potential relative earnings differential given by \(y_{t,s} - \overline{y}_i = \delta(\alpha_i - v)\) takes its maximum value. In this case, a non-sharing firm which switches to the sharing mode is able to reap the largest possible productivity gain, since \(f(\delta(\alpha_i - v)) > f(\delta(1 - \lambda_i)(\alpha_i - v))\) for all \(\lambda_i \in (0,1] \subset \mathbb{R}\) and for any \(\alpha_i > v\). In order to better convey the substance of all these properties of the productivity differential function (22-a), they are displayed in Figure 1.

![Figure 1. Productivity differential function](image)

More broadly, the following intuitive rationales can be proposed for the productivity gain in (22). First, the average earnings can be seen by a worker as a conventional estimate of her outside option or fallback position. As a result, workers who receive a share of profits in addition to a base wage deliver a productivity gain (relatively to the productivity they would deliver if remunerated with only a base wage) which increases with the excess of the higher earnings over their outside option or fallback position. Second, the average earnings can be seen by a worker as the conventional reference point against which a compensation package featuring a base wage and shared profits should be compared when deciding how much above-normal productivity to provide in return. Therefore, above-average earnings are seen by workers as warranting the delivery of above-normal levels of productivity. Blasi, Kruse and Freeman (2010) propose an interesting rationale for profit sharing based on reciprocity and gift exchange (as these notions are articulated in Akerlof (1982)): a “gift” of higher compensation through profit sharing raises worker morale, and workers reciprocate with a “gift” of greater productivity. More generally, a “gift” of profit sharing on top of a base wage may help to create and reinforce a sense of shared interests and the value of a reciprocal relationship. Alternatively, the conventional reference point provided by the average earnings can be interpreted as reflecting workers’ earnings expectation under uncertainty. Therefore, a compensation package that features a base wage and shared profits is greeted as a pleasant surprise which warrants the delivery of above-normal levels of productivity.

While the frequency distribution of compensation strategies is given in both the ultra-short run and the short run, an individual firm revises periodically its compensation strategy in a manner described by the following replicator dynamics:\(^{11}\)

\[^{11}\text{The replicator dynamics can be formally derived from a model of (social or individual) learning as in Weibull (1995, sec. 4.4).}\]
\[
\lambda_{t+1} - \lambda_t = \lambda_i (r_{ij}^t - r_{ij}^{*}) = \lambda_i (1 - \lambda_i) (\pi_{ij}^e - \pi_{ij}^*) \mu^e_t,
\]
where \(r_{ij}^t \equiv \lambda_i r_{ij}^{*} + (1 - \lambda_i) r_{ij}^{*} \) is the average net profit rate, which is given by (16), with \(\mu^e_t \) being given by (20), and the latter equality is obtained using (14) and (15), so that \(\pi_{ij}^e \) and \(\pi_{ij}^* \) are given by (9) and (8), respectively. According to the replicator dynamics in (23), the frequency of the profit-sharing strategy in the population of firms rises (falls) exactly when it has above-average (below-average) payoff.

Using (8), (9) and (20), the replicator dynamics in (23) becomes:

\[
(23-a) \quad \lambda_{t+1} = \lambda_i \left[1 + (1 - \lambda_i) \left(1 - \delta \right) \left(1 - \frac{v}{\alpha_i} \right) \right] \left(1 - \frac{v}{\alpha_i} \right) \mu^e_t.
\]

Thus, the state transition of the economy is determined by the system of difference equations (22-a) and (23-a), whose state space is \(\Theta = \{ (\alpha_i, \lambda_i) : 0 \leq \lambda_i \leq 1, \alpha_i > v \} \), as represented by the shaded area in each panel in Figure 2.

We will show that the dynamic system given by (22-a) and (23-a) has two long-run equilibria, with each of them featuring survival of only one compensation strategy. These pure-strategy equilibria are denoted by \(E_1 \) and \(E_2 \) in the three panels in Figure 2. Moreover, we will show the possible existence of a third long-run equilibrium (denoted by \(E_3 \) in panel (b) in Figure 2), now featuring the survival of both compensation strategies.

Note that \(\lambda_{t+1} = \lambda_i = 0 \) for any \(t \in \{0,1,2,\ldots\} \) satisfies (23-a) for any state \((\alpha_i,0) \in \Theta \). Moreover, let \(\alpha_{t+1} = \alpha_i = \bar{\alpha} \in (v, \infty) \subset \mathbb{R} \) for any \(t \in \{0,1,2,\ldots\} \). In this case, the difference equation (22-a) is satisfied for any \(t \in \{0,1,2,\ldots\} \) if the following condition holds:

\[
(24) \quad \bar{\alpha} = f \left(\delta (\bar{\alpha} - v) \right).
\]

We demonstrate in Appendix 1 that \(\bar{\alpha} \in (v, \infty) \subset \mathbb{R} \) exists and is unique. Therefore, one of the two pure-strategy long-run equilibria of the system, \(E_1 \) in Figure 2, is given by the state \((\bar{\alpha},0) \subset \Theta \), which features the non-sharing compensation strategy as the only survivor.

Meanwhile, if \(\lambda_{t+1} = \lambda_i = 1 \) for any \(t \in \{0,1,2,\ldots\} \), the difference equation (23-a) is satisfied for any state \((\alpha_i,1) \in \Theta \) and, given (22-a), it follows that \(\alpha_{t+1} = \alpha_i = f \left(0 \right) \) for all \(t \in \{0,1,2,\ldots\} \). Therefore, the other pure-strategy long-run equilibrium of the system, \(E_2 \) in Figure 2, is given by the state \((f(0),1) \subset \Theta \), which features the profit-sharing compensation strategy as the only survivor.

Finally, if \(\lambda_{t+1} = \lambda_i = \lambda^* \in (0,1) \subset \mathbb{R} \) for any \(t \in \{0,1,2,\ldots\} \), the difference equation (23-a) is satisfied if the individual profit shares (8) and (9) are equalized. Given that the productivity differential (which is equal to the productivity in the profit-sharing firms) is the only adjusting variable among the determinants of the individual profit shares (8) and (9), the latter are equalized when the (long-run) equilibrium value of the productivity differential is:

\[
(25) \quad \alpha^* = \frac{(1-\delta)v}{v-\delta},
\]
where we assume that \(v > \delta \). Meanwhile, given that \(\alpha_{t+1} = \alpha_i = \alpha^* \) for all \(t \in \{0,1,2,\ldots\} \), the difference equation (22-a) is satisfied if the following condition holds:

\[
(26) \quad \alpha^* = f \left(\delta (1-\lambda^*)(\alpha^* - v) \right).
\]
As demonstrated in Appendix 2, there is a unique \(\lambda^* \in (f(0), \bar{\alpha}) \subset \mathcal{R} \) which satisfies (26) if the following necessary and sufficient condition is satisfied:

\[
(27) \quad f(0) < \alpha^* < \bar{\alpha}.
\]

Therefore, if the condition in (27) is satisfied, there exists a third long-run equilibrium given by the state \((\alpha^*, \lambda^*) \subset \Theta \) (and denoted by \(E_3 \) in panel (b) in Figure 2), which features the survival of both strategies.

The well-defined ordering (27), which implies and is implied by the existence and uniqueness of the mixed-strategy equilibrium, \(E_3 \), can be interpreted intuitively with recourse to Figure 3, which plots the next-period productivity differential as a function of its current-period value. Note that, ceteris paribus, the function in (22-a) shifts down with an increase in the fraction of profit-sharing firms at period \(t \). More precisely, this function rotates clockwise around the point \((v, f(0)) \) as \(\lambda_i \) increases, due to the resulting squeeze in the relative real earnings differential given by \(y_{s,t} - \bar{y}_t \) for every \(\alpha_i > v \).

(a) Relatively weak labor productivity differential: \(f(0) < \bar{\alpha} < \alpha^* \)

(b) Relatively moderate labor productivity differential: \(f(0) < \alpha^* < \bar{\alpha} \)
(c) Relatively strong labor productivity differential: \(\alpha^* < f(0) < \bar{\alpha} \)

Figure 2. Phase diagram for different magnitudes of the labor productivity differential

Figure 3. Ordering of labor productivity differentials when there is a mixed-strategy long-run equilibrium

Let us now explore the dynamics of the system towards the long run as governed by the motion equations (22-a) and (23-a). The \(\Delta \alpha_t = \alpha_{t+1} - \alpha_t = 0 \) isocline is the locus of all the states of the set given by \(\{(\alpha_t, \lambda_t) \in \Theta : f(\delta(1-\lambda_t)(\alpha_t - \nu)) - \alpha_t = 0 \} \). Thus, this isocline connects the equilibrium solutions \(E_1 \) and \(E_2 \), as depicted in Figure 2. In order to know more about the \(\Delta \alpha_t = 0 \) isocline, we can use (22-a) to compute the following derivative:

\[
\frac{d \lambda_t}{d \alpha_t}_{|_{\Delta \alpha_t=0}} = \frac{\delta(1-\lambda_t)f'(\delta(1-\lambda_t)(\alpha_t - \nu)) - 1}{\delta(\alpha_t - \nu)f'(\delta(1-\lambda_t)(\alpha_t - \nu))}.
\]

The sign of (28) in the neighborhood of the pure-strategy long-run equilibria (\(\lambda^* = 0 \) and \(\lambda^* = 1 \)) can be determined by taking the limit of (28) as the state of the system approaches each of these equilibria. These limits are given by:
(29) \[
\lim_{\alpha \to (0,1)} \frac{d\lambda_t}{d\alpha_t} \bigg|_{\Delta \alpha_t = 0} = \frac{-1}{\delta(f(0)-v) f'(0)} < 0 \quad \text{and} \quad \lim_{\alpha \to (0,1)} \frac{d\lambda_t}{d\alpha_t} \bigg|_{\Delta \alpha_t = 0} = \frac{\delta f'(\delta(\bar{v} - v))}{\delta(\bar{v} - v)} f'(\delta(\bar{v} - v)) < 0,
\]
with the sign of the second limit in (29) coming from (A-2.2) in Appendix 2. The reason why in the vicinity of the extinction of one worker compensation strategy, the higher is the productivity differential, the lower is the proportion of profit-sharing firms, is that a higher relative earnings differential is necessary to generate a higher productivity differential (recall that the productivity differential in (22) increases at a decreasing rate, as there is strategic substitutability in the firms’ choice of compensation mechanism).

Meanwhile, the \(\Delta \lambda_t = \lambda_{t+1} - \lambda_t = 0 \) isoline is the locus of all the states of the set given by \(\{ (\alpha_t, \lambda_t) \in \Theta : \lambda_t = 0 \} \cup \{ (\alpha_t, \lambda_t) \in \Theta : \lambda_t = 1 \} \cup \{ (\alpha_t, \lambda_t) \in \Theta : \alpha_t = \alpha^* \} \). As depicted in Figure 2, this set is represented by a semi-inverted H-shaped isoline.

From the local stability analysis carried out in Appendices 3-5, the following results emerge. In the configuration depicted in panel (a) in Figure 2, the productivity gain for profit-sharing firms generated by a given relative real earnings differential is relatively low. In this case, there are only two pure-strategy long-run equilibria, \(E_1 = (\bar{\alpha}, 0) \), with no firm playing the profit-sharing strategy, and \(E_2 = (f(0), 1) \), with all firms rather playing the profit-sharing strategy. As shown in Appendices 3 and 4, \(E_2 = (f(0), 1) \) is a repulsor, while \(E_1 = (\bar{\alpha}, 0) \) is an attractor.

Meanwhile, in the configuration depicted in panel (c) in Figure 2, the productivity gain for profit-sharing firms is relatively moderate. In this case, there are again only two pure-strategy long-run equilibria, \(E_1 = (\bar{\alpha}, 0) \), with all firms playing the non-sharing strategy, and \(E_2 = (f(0), 1) \), with all firms rather playing the profit-sharing strategy. As shown in Appendices 3 and 4, while \(E_2 = (f(0), 1) \) is an attractor, \(E_1 = (\bar{\alpha}, 0) \) is a repulsor.

Finally, in the configuration depicted in panel (b) in Figure 2, the productivity gain for profit-sharing firms is relatively low. In this case, there are the same two pure-strategy long-run equilibria, \(E_1 = (\bar{\alpha}, 0) \) and \(E_2 = (f(0), 1) \), and also one mixed-strategy equilibrium, \(E_3 = (\alpha^*, \lambda^*) \), featuring heterogeneity in employee compensation strategies across firms. As shown in Appendices 2-5, \(E_1 = (\bar{\alpha}, 0) \) and \(E_2 = (f(0), 1) \) are repulsors, while \(E_3 = (\alpha^*, \lambda^*) \) is an attractor if condition (A-5.4) in Appendix 5 is satisfied (which may not be the case, for instance, if the short-run equilibrium capacity utilization is too high).

Yet, since the state space of the system is positively invariant (as shown in Appendix 6), in this configuration heterogeneity in compensation strategies across firms does persist in the long-run even if the mixed-strategy long-run equilibrium is not an attractor. This positive invariance implies that, if the long-run equilibrium with coexistence of both compensation strategies is not an attractor, the system keeps undergoing endogenous, self-sustaining and persistent fluctuations in the frequency distribution of compensation strategies and the average productivity, with the average levels of the income shares, capacity utilization and growth persistently fluctuating as well. In fact, Mitchell et al. (1990) and D’Art and Turner (2006) find that the adoption of profit sharing schemes has tended to be cyclical in nature in many advanced countries since the origin of these schemes in the 19th century. Moreover, using data for Ireland, D’Art and Turner (2006) find evidence that the trend in profit sharing is affected by fluctuations in the business cycle.

It is also worth exploring the long-run equilibrium of income distribution, capacity utilization and growth in each one of these three configurations as regards the relative magnitude of the productivity gain for profit-sharing firms, as depicted in Figure 2. We can use (10), (20) and (21) to establish:

(30) \[\pi^*(\bar{\alpha}, 0) = \pi^*(\alpha^*, \lambda^*) = \pi_n = 1 - \nu \quad \text{and} \quad \pi^*(f(0), 1) = \pi'_n(f(0)) = (1 - \delta) \left[1 - \frac{\nu}{\nu(f(0))} \right] \]
and:
where the first equality in (30) and (31) follows from the fact that \(E_1 = (\alpha^*, \lambda^*) \) is defined implicitly by the condition given by \(\pi^*_n(\alpha^*, \lambda^*) - \pi^*_n = 0 \) (recall that the profit share in income of non-sharing firms is exogenously given). In panel (a), with \(\alpha > f(0) \), we have \(\pi^*(\alpha^*, \lambda^*) > \pi^*(f(0),1) \), and therefore \(u^*(\alpha^*, \lambda^*) > u^*(f(0),1) \). In panel (b), with \(\alpha > f(0) \), we have \(\pi^*(\alpha^*, \lambda^*) = \pi^*(\alpha^*, \lambda^*) > \pi^*(f(0),1) \), and therefore \(u^*(\alpha^*, \lambda^*) > u^*(f(0),1) \). In panel (c), with \(\alpha < f(0) \), we have \(\pi^*(\alpha^*, \lambda^*) < \pi^*(f(0),1) \), and hence \(u^*(\alpha^*, \lambda^*) < u^*(f(0),1) \). Therefore, if the economy converges to a long-run equilibrium (which may not occur in panel (b), as shown in Appendix 5), the coupled evolutionary dynamics of profit-sharing adoption and productivity takes the economy to a position in which the total wage share and capacity utilization are at their lowest possible long-run equilibrium levels.

Using (21), the long-run equilibrium values of the growth rate are given by:

\[
\begin{align*}
(32) \quad g^*(\alpha, 0) &= g^*(\alpha^*, \lambda^*) = \gamma(1-v)u^*(\alpha, 0) \\
&\quad \text{and} \quad g^*(f(0), 1) = \gamma \pi^*(f(0), 1) u^*(f(0), 1).
\end{align*}
\]

Using (30)-(32), we can compute the following growth rate differential:

\[
(33) \quad \Delta g^* \equiv g^*(\alpha, 0) - g^*(f(0), 1) = \frac{\beta_1 \gamma \pi^*(\alpha, 0) \pi^*(f(0), 1) \left[\pi^*(\alpha, 0) - \pi^*(f(0), 1) \right]}{\left[\gamma \pi^*(\alpha, 0) - \beta_2 \right] \left[\gamma \pi^*(f(0), 1) - \beta_2 \right]},
\]

where \(\theta \equiv \gamma - \beta_2 \left[\frac{1}{\pi^*(\alpha, 0)} + \frac{1}{\pi^*(f(0), 1)} \right] \). Note that, given the sign of the profit share differential given by \(\pi^*(\alpha, 0) - \pi^*(f(0), 1) \), the sign in (33) depends on the sign of \(\theta \), which is indeterminate (recall that the Keynesian short-run stability condition assumed in footnote 8 implies that \(\gamma \pi^*(\alpha, 0) - \beta_2 > 0 \) and \(\gamma \pi^*(f(0), 1) - \beta_2 > 0 \).

When there is convergence to \(E_1 = (\alpha, 0) \) (panel (a)) or \(E_3 = (\alpha^*, \lambda^*) \) (panel (b)), it follows that \(\pi^*(\alpha, 0) = \pi^*(\alpha^*, \lambda^*) > \pi^*(f(0), 1) \). In this case, the economy converges to a long-run equilibrium which features the highest (lowest) possible long-run equilibrium growth rate if \(\theta > 0 \) (\(\theta < 0 \)). Meanwhile, when there is convergence to \(E_2 = (f(0), 1) \) (panel (c)), it follows that \(\pi^*(\alpha, 0) = \pi^*(\alpha^*, \lambda^*) < \pi^*(f(0), 1) \). Thus, if \(\theta > 0 \) (\(\theta < 0 \)), the economy also converges to the highest (lowest) possible long-run equilibrium growth rate. In sum, when the economy converges a long-run equilibrium, the latter features the highest possible long-run equilibrium growth rate when \(\theta > 0 \). The intuition for this result is straightforward. Recall from (30)-(31) that, if the economy converges to a long-run equilibrium (which may not happen in panel (b)), the latter features the lowest possible long-run equilibrium values of the wage share in income \(1 - \pi^* \) and capacity utilization \((u^*) \). Thus, given \(\pi^*(\alpha, 0) \) and \(\pi^*(f(0), 1) \), the likelihood of \(\theta > 0 \) is the higher, given the saving rate \(\gamma \) (accelerator effect \(\beta_2 \)), the lower (higher) the accelerator effect (saving rate). Meanwhile, we can use (21) to express the long-run equilibrium growth rate as \(g^* = \gamma \pi^* u^* \). Hence, for the lowest possible long-run equilibrium value of the total wage share to be accompanied by the highest possible long-run equilibrium growth rate, the also accompanying lowest possible capacity utilization cannot be too lower than in the other long-run equilibria. Intuitively, the likelihood that this latter condition is satisfied, which requires that effective-demand effects are not too strong, varies positively (negatively) with the saving rate (accelerator effect).
5. Conclusions

This paper is motivated by several pieces of empirical evidence. First, historically, there has been a persistent heterogeneity in employee compensation strategies across firms, and employee profit-sharing schemes have experienced a fluctuating popularity. Second, profit sharing raises labor productivity in the firm, and surveys find that both employers and employees usually see profit sharing as helping to improve firm performance in several dimensions. Third, surveys find that non-deferred and in cash profit sharing is ranked first by workers as motivation device. Fourth, firms switch mechanisms of compensation frequently, with the gross changes in mechanisms being far more numerous than the net changes. Fifth, profit sharing has a meaningful effect on worker total compensation, which suggests that profit sharing tends to come on top of, rather than in place of, a base wage.

We model firms as periodically choosing to compensate workers with either a base wage or a share of profits on top of this base wage, with the distribution of compensation strategies and labor productivity across firms being evolutionarily time-varying. Moreover, we explore implications of this coupled evolutionary dynamics for income distribution (and therefore aggregate effective demand), and therefore for the rates of capacity utilization and growth.

When the productivity gain for profit-sharing firms is relatively low, there are two long-run equilibria, one featuring all firms sharing profits and the other with no firm sharing profits. Yet, the former is a repulsor, while the latter is an attractor. When the productivity gain for profit-sharing is relatively high, the economy has the same two long-run equilibria. Yet, the long-run equilibrium with all firms sharing profits is an attractor, while the long-run equilibrium with no firm sharing profits is a repulsor. When the productivity gain for profit-sharing firms is relatively moderate, these two long-run equilibria are joined by another long-run equilibrium that features heterogeneity in worker compensation modes across firms. In this case, the long-run equilibria with survival of only one strategy are repulsors, while the long-run equilibrium with coexistence of both strategies is either an attractor or a repulsor. However, even if the long-run equilibrium with coexistence of both compensation strategies is not an attractor, the economy keeps undergoing endogenous, self-sustaining and persistent fluctuations in the distribution of compensation modes and productivity (which accords with the empirical evidence), with income distribution, capacity utilization and economic growth persistently fluctuating as well.

Meanwhile, when there is convergence to some of the three long-run equilibria, the total wage share (which includes shared profits) and capacity utilization become stationary at their lowest possible long-run equilibrium values. However, these lowest possible long-run equilibrium values of the total wage share and capacity utilization may be accompanied by the highest possible long-run equilibrium growth rate if effective-demand effects are not too strong.

References

Richard Blundell, David Card and Richard Freeman (eds), Seeking a Premier League Economy, Chicago: University of Chicago Press.

Appendix 1 - Existence and uniqueness of a long-run equilibrium with all firms playing the non-sharing strategy

Let \(x = \alpha - v \) and \(h(x) = f(\delta x) - v \). In order to show the existence and uniqueness of a \(\bar{x} \in (v, \infty) \subset \mathbb{R} \) which satisfies (24) we have to show that the function \(h \) has a unique strictly positive fixed point, i.e., there is a unique \(\bar{x} = \bar{\alpha} - v \in \mathbb{R}^+_+ \) such that \(\bar{x} = h(\bar{x}) \).

We can accomplish this by using Theorem 3 in Kennan (2001, pp. 895), which makes it possible to ascertain that \(h \) has a unique \(\bar{x} \in \mathbb{R}^+_+ \), if the following conditions are satisfied: (i) \(h \) is increasing; (ii) \(h \) is strictly concave; (iii) \(h(0) \geq 0 \); (iv) \(h(a) > a \) for some \(a > 0 \); and (v) \(h(b) < b \) for some \(b > a \).

Conditions (i) and (ii) are satisfied. Since \(f'(\cdot) > 0 \) and \(f''(\cdot) < 0 \) in the entire domain of \(f \), it follows that for all \(x \in \mathbb{R}^+ \) we have:

\[
(A-1.2) \quad h'(x) = \delta f'(\delta x) > 0 \quad \text{and} \quad h''(x) = \delta^2 f''(\delta x) < 0.
\]

Therefore, the function \(h \) is strictly increasing and strictly concave.

Condition (iii) is also satisfied. Since \(f(0) > 1 > v \), it follows that \(h(0) = f(0) - v > 0 \).

Condition (iv) is also satisfied. Given that \(0 < v < 1 \), it follows that \(0 < 1 - v < 1 \). Besides, since \(h \) is strictly increasing and \(f(0) > 1 \), there is a \(a = 1 - v \) such that \(h(1 - v) = f(\delta(1 - v)) - v > f(0) - v > 1 - v \).

Condition (v) is also satisfied. Recall that we have assumed that \(\lim_{(y_s, \bar{y}) \to \infty} f'(y_s - \bar{y}) = 0 \). Hence, since \(y_s - \bar{y} = \delta(\alpha - v) = \delta x \) for \(\lambda = 0 \), it follows that \(\lim_{\lambda \to \infty}(y_s - \bar{y}) = \lim_{\lambda \to \infty}\delta x = \infty \). For \(\lambda = 0 \), we can deduce that

\[
\lim_{x \to \infty} \frac{h(x)}{x} = \lim_{x \to \infty} \frac{f(\delta x) - v}{x} = \lim_{x \to \infty} \delta f'(\delta x) = 0,
\]

where in the last equality we have used L'Hôpital's rule. Thus, we can assert that for every \(\varepsilon > 0 \) there is some \(M > 0 \) such that for all \(x > M \) we have \(\left| \frac{h(x)}{x} \right| < \varepsilon \). This last inequality can be re-written as \(h(x) < \varepsilon x \), since \(h(x) = f(\delta x) - v > f(0) - v > 0 \) for all \(x > 0 \). We can set \(\varepsilon = 1 \). In this case, there is some \(M > 0 \) such that for all \(x > M \) it follows that \(h(x) < x \). Thus, it is enough to choose any \(x = b > \text{Max}\{M, a\} \) to obtain \(h(b) < b \) and \(b > a = 1 - v \).

Appendix 2 - Existence and uniqueness of a mixed-strategy long-run equilibrium (both compensation strategies are played across the population of firms)

Let \(\phi(\alpha, \lambda) = \alpha - f(\delta(1 - \lambda)(\alpha - v)) \). Condition (26) is satisfied if, and only if, \(\phi(\alpha^*, \lambda^*) = 0 \). Let us show that, given \(\alpha^* \), if condition (27) is satisfied, there is a unique \(\lambda^* \in (0, 1) \subset \mathbb{R} \) such that \(\phi(\alpha^*, \lambda^*) = 0 \).

Given the existence and uniqueness of the fixed point \(\bar{x} \) shown in Appendix 1, we can use the Index Theorem (Kehoe, 1987, p. 52) to write:

\[
(A-2.1) \quad \text{index}(\bar{x}) = \text{sgn} \left(1 - \frac{\partial f(\delta(\bar{x} - v))}{\partial \alpha} \right) = 1,
\]

where \(\text{sgn}(\cdot) \) stands for the sign function. Based on this function, we can establish that:

\[
(A-2.2) \quad \frac{\partial\phi(\bar{x}, \lambda)}{\partial \alpha} = 1 - \delta f'(\delta(\bar{x} - v)) > 0.
\]
Hence, given the existence and uniqueness of $\bar{\alpha}$, the graph of $\phi(\bar{\alpha}, \lambda)$ in the plane given by $\{(\alpha, \lambda) \in R^2 \}$ always crosses the 45-degree line only once and from above, as shown in Figure 3. Since it follows from (24) that $\phi(\bar{\alpha}, 0) = \bar{\alpha} - f(\delta(\bar{\alpha} - v)) = 0$, we can conclude that $\phi(\alpha, 0) = \alpha - f(\delta(\alpha - v)) < 0$ for all $\alpha \in (v, \bar{\alpha}) \subset R$. For all $\alpha^* < \bar{\alpha}$, then, we can infer that:

(A-2.3) $\phi(\alpha^*, 0) = \alpha^* - f\left(\delta(\alpha^* - v)\right) < 0$.

Moreover, it is straightforward that (27) implies that:

(A-2.4) $\phi(\alpha^*, 1) = \alpha^* - f(0) > 0$.

Since $\phi(\alpha^*, 0) < 0$, $\phi(\alpha^*, 1) > 0$ and ϕ is continuous along the domain, we can apply the intermediate value theorem to conclude that there is some $\lambda^* \in (0,1) \subset R$ such that $\phi(\alpha^*, \lambda^*) = 0$. Moreover, given that $f'(\cdot) > 0$ for all $\lambda \in [0,1] \subset R$, we have:

(A-2.5) $\frac{\partial \phi(\alpha^*, \lambda)}{\partial \lambda} = \delta(\alpha^* - v)f'\left(\delta(1-\lambda)(\alpha^* - v)\right) > 0$,

for all $\lambda \in [0,1] \subset R$. As a result, since the function in (A-2.5) is continuous in the closed interval $[0,1] \subset R$, there is only one $\lambda^* \in (0,1) \subset R$ such that $\phi(\alpha^*, \lambda^*) = 0$.

Appendix 3 - Local stability of the long-run equilibrium with all firms playing the non-sharing strategy

The Jacobian matrix evaluated around the equilibrium $(\bar{\alpha}, 0) \subset \Theta$ is given by:

(A-3.1) $J(\bar{\alpha}, 0) = \begin{bmatrix} \delta f'(\delta(\bar{\alpha} - v)) & -\delta(\bar{\alpha} - v)f'(\delta(\bar{\alpha} - v)) \\ 0 & 1 + \left[(1 - \delta)\left(1 - \frac{v}{\bar{\alpha}}\right) - (1 - v)\right] \frac{\beta(1 - v)}{\gamma(1 - v) - \beta_2} \end{bmatrix}$.

Let ξ be an eigenvalue of the Jacobian matrix (A-3.1). We can set the characteristic equation of the linearization around the equilibrium:

(A-3.2) $|J - \xi I| = \begin{vmatrix} a - \xi & -b \\ 0 & c - \xi \end{vmatrix} = \xi^2 - (a + c)\xi + ac = 0$,

where $a \equiv \delta f'(\delta(\bar{\alpha} - v)) > 0$, $b \equiv \delta(\bar{\alpha} - v)f'(\delta(\bar{\alpha} - v)) > 0$, and $c \equiv 1 + \left[(1 - \delta)\left(1 - \frac{v}{\bar{\alpha}}\right) - (1 - v)\right] \frac{\beta(1 - v)}{\gamma(1 - v) - \beta_2}$. The solutions of (A-3.2) are the eigenvalues of the Jacobian matrix (A-3.1), which are given by:

(A-3.3) $\xi_1 = \delta f'(\delta(\bar{\alpha} - v))$ and $\xi_2 = 1 + [\pi'_s(\bar{\alpha}) - \pi_n]u'(\bar{\alpha}, 0)$,

where $\pi'_s(\bar{\alpha}) = (1 - \delta)\left(1 - \frac{v}{\bar{\alpha}}\right)$, $\pi_n = 1 - v$, and $u'(\bar{\alpha}, 0) = \frac{\beta(1 - v)}{\gamma(1 - v) - \beta_2}$.

Let us investigate the absolute value of ξ_1. Given that $\delta > 0$ and $f'(\cdot) > 0$ along the domain, it follows that $\xi_1 = \delta f'(\delta(\bar{\alpha} - v)) > 0$. Also, it follows from (A-2.2) that $\xi_2 = \delta f'(\delta(\bar{\alpha} - v)) < 1$. Hence, it follows that $|\xi_1| < 1$.

17
Let us check the absolute value of ξ_2. We want to find under what condition(s) it follows that $-1 < \xi_2 < 1$. Given (A-3.3), it follows that $-1 < \xi_2 < 1$ obtains if, and only if, $-2 < \left[\pi'_i(\bar{\alpha}) - \pi_n \right] u^*(\bar{\alpha},0) < 0$.

Since $0 < \pi'_i(\bar{\alpha}) < 1$ and $0 < \pi_n < 1$, we obtain that $-1 < \pi'_i(\bar{\alpha}) - \pi_n < 1$. Since $0 < u^*(\bar{\alpha},0) < 1$, it follows that $-2 < -u^*(\bar{\alpha},0) < \left[\pi'_i(\bar{\alpha}) - \pi_n \right] u^*(\bar{\alpha},0)$. Thus, $\pi'_i(\alpha) - \pi_n = (1 - \delta)\left(1 - \frac{\nu}{\alpha} \right) - (1 - \nu)$ is increasing in α. Given (25), we have $\pi'_i(\alpha') - \pi_n = 0$. Thus, if $\bar{\alpha} < \alpha^*$ (panel (a) in Figure 2), we find that $\pi'_i(\bar{\alpha}) - \pi_n < 0$, and hence that $\left[\pi'_i(\bar{\alpha}) - \pi_n \right] u^*(\bar{\alpha},0) < 0$, which means that $\left| \xi_2 \right| < 1$ if $\bar{\alpha} < \alpha^*$. But if $\bar{\alpha} > \alpha^*$ (panels (b) and (c) in Figure 2), it follows that $\pi'_i(\bar{\alpha}) - \pi_n > 0$, and hence that $\left[\pi'_i(\bar{\alpha}) - \pi_n \right] u^*(\bar{\alpha},0) > 0$, so that $\left| \xi_2 \right| > 1$ if $\bar{\alpha} > \alpha^*$. This completes the demonstration that the long-run equilibrium with no firm playing the profit-sharing strategy, $(\bar{\alpha},0) \subseteq \Theta$, is an attractor if $\bar{\alpha} < \alpha^*$ (panel (a) in Figure 2) and a repulsor if $\bar{\alpha} > \alpha^*$ (panels (b) and (c) in Figure 2).

Appendix 4 - Local stability of the long-run equilibrium with all firms playing the profit-sharing strategy

The Jacobian matrix evaluated around the equilibrium $(f(0),1) \subseteq \Theta$ is given by:

$$
(A-4.1) \quad J(f(0),1) = \begin{bmatrix}
0 & -\delta \left(f(0) - \nu \right) f'(0) \\
0 & 1 - \left(1 - \delta \right) \left(1 - \frac{\nu}{f(0)} \right) - (1 - \nu) \\
\end{bmatrix} \frac{\beta_2 (1 - \delta) (1 - \nu / f(0))}{\gamma (1 - \delta) (1 - \nu / f(0)) - \beta_2}.
$$

Let ξ be an eigenvalue of the Jacobian matrix (A-4.1). We can set the characteristic equation of the linearization around this equilibrium:

$$
(A-4.2) \quad |J - \xi I| = \begin{vmatrix}
-\xi & -a \\
b - \xi & 0 \\
\end{vmatrix} = \xi (\xi - b) = 0,
$$

with $a \equiv \delta [f(0) - \nu] f'(0) > 0$ and $b \equiv 1 - \left(1 - \delta \right) \left(1 - \frac{\nu}{f(0)} \right) - (1 - \nu) \frac{\beta_2 (1 - \delta) (1 - \nu / f(0))}{\gamma (1 - \delta) (1 - \nu / f(0)) - \beta_2}$.

In this case, the eigenvalues of the Jacobian matrix (A-4.1) are easily computed from (A-4.2):

$$
(A-4.3) \quad \xi_1 = 0 \quad \text{and} \quad \xi_2 = b = 1 - \left[\pi'_i ((f(0)) - \pi_n \right] u^* (f(0),1),
$$

where $\pi'_i ((f(0)) = (1 - \delta) \left(1 - \frac{\nu}{f(0)} \right) - (1 - \nu)$, $\pi_n = 1 - \nu$, and $u^* (f(0),1) = \frac{\beta_2 (1 - \delta) (1 - \nu / f(0))}{\gamma (1 - \delta) (1 - \nu / f(0)) - \beta_2}$.

The local stability of $(f(0),1) \subseteq \Theta$ depends on ξ_2. Given (A-4.3), it follows that $-1 < \xi_2 < 1$ obtains if, and only if, $0 < \left[\pi'_i ((f(0)) - \pi_n \right] u^* (f(0),1) < 2$.

Since $0 < \pi'_i ((f(0)) < 1$ and $0 < \pi_n < 1$, it follows that $-1 < \pi'_i ((f(0)) - \pi_n < 1$. Therefore, given that $0 < u^* (f(0),1) < 1$, we can infer that $\left[\pi'_i ((f(0)) - \pi_n \right] u^* (f(0),1) < 2$.

It can be seen that $\pi'_i (\alpha) - \pi_n = (1 - \delta) \left(1 - \frac{\nu}{\alpha} \right) - (1 - \nu)$ is increasing in α. Given (25), we have $\pi'_i (\alpha') - \pi_n = 0$. Hence, if $(f(0) < \alpha^*$ (panels (a) and (b) in Figure 2), we obtain that $\pi'_i (f(0)) - \pi_n < 0$, and
hence that \(\left[\pi^*_n \left(f(0) \right) - \pi_n \right] u^* \left(f(0) , 1 \right) < 0 \), which means that \(\xi > 1 \) if \(f(0) < \alpha^* \). Meanwhile, if \(f(0) > \alpha^* \) (panel (c) in Figure 2), we obtain that \(\pi^*_n \left(f(0) \right) - \pi_n > 0 \), and hence that \(\left[\pi^*_n \left(f(0) \right) - \pi_n \right] u^* \left(f(0) , 1 \right) > 0 \). Thus, it follows that \(\xi < 1 \) if \(f(0) > \alpha^* \). This completes the demonstration that the long-run equilibrium with all firms playing the profit-sharing strategy, \(\left(f(0), 1 \right) \subset \Theta \), is a repulsor if \(f(0) < \alpha^* \) (panels (a) and (b) in Figure 2) and an attractor if \(f(0) > \alpha^* \) (panel (c) in Figure 2).

Appendix 5 - Local stability of the long-run equilibrium with heterogeneity in worker compensation strategies across firms

The Jacobian matrix evaluated around the equilibrium \((\alpha^*, \lambda^*) \subset \Theta \) is given by:

\[
J(\alpha^*, \lambda^*) = \begin{bmatrix}
\delta(1-\lambda^*) f^\prime \left(\delta(1-\lambda^*) (\alpha^* - \nu) \right) & -\delta(\alpha^* - \nu) f^\prime \left(\delta(1-\lambda^*) (\alpha^* - \nu) \right) \\
\lambda^* (1-\lambda^*) (1-\delta) & \frac{\beta_1 (1-\nu)}{(\alpha^*)^2} \gamma (1-\nu) - \beta_2 \\
\end{bmatrix}
\]

Let \(\xi \) be an eigenvalue of the Jacobian matrix (A-5.1). We can set the characteristic equation of the linearization around the equilibrium:

\[
\left| J - \xi I \right| = \begin{bmatrix}
a - \xi & -b \\
c & 1 - \xi \\
\end{bmatrix} = \xi^2 - (a + b) \xi + (a + bc) = 0,
\]

where \(a \equiv \delta(1-\lambda^*) f^\prime \left(\delta(1-\lambda^*) (\alpha^* - \nu) \right) > 0 \), \(b \equiv -\delta(\alpha^* - \nu) f^\prime \left(\delta(1-\lambda^*) (\alpha^* - \nu) \right) > 0 \), and \(c \equiv \lambda^* (1-\lambda^*) (1-\delta) \frac{\beta_1 (1-\nu)}{(\alpha^*)^2} \gamma (1-\nu) - \beta_2 > 0 \).

We can use the Samuelson stability conditions for a second order characteristic equation to determine under what conditions the two eigenvalues are inside the unit circle. Based on Farebrother (1973, p. 396, inequalities 2.4 and 2.5), we can establish the following set of simplified Samuelson conditions for the quadratic polynomial in (A-5.2):

\[
1 + a + bc > -\left(a + 1 \right) = a + 1 \quad \text{and} \quad a + bc < 1.
\]

Let us prove that these conditions are satisfied if \(a < 1 \).

First, note that \(1 + a + bc > a + 1 \) simplifies to \(bc > 0 \), which is trivially satisfied given that \(b > 0 \) and \(c > 0 \).

Meanwhile, the second inequality, \(a + bc < 1 \), can be expressed as follows:

\[
a + bc = \delta(1-\lambda^*) f^\prime \left(\frac{\nu (1-\delta) \lambda^* (\alpha^* - \nu) \beta_1 (1-\nu)}{(\alpha^*)^2} \gamma (1-\nu) - \beta_2 \right) < 1.
\]

Appendix 6 - Positive invariance of the state space

We want to show that \((\alpha_t, \lambda_t) \in \Theta \) for all \(t \in \{ 1, 2, \ldots \} \) and initial condition \((\alpha_0, \lambda_0) \in \Theta \).

Let us first demonstrate that \(\alpha_t > \nu \) for all \(t \in \{ 0, 1, 2, \ldots \} \) and \((\alpha_0, \lambda_0) \in \Theta \). Given (22-a) and the assumptions that \(f(0) > 1 > \nu \) and \(f(.) \) is strictly increasing, we can establish that
\(\alpha_{t+1} = f\left(\delta(1 - \lambda_t)(\alpha_t - v)\right) \geq f(0) > v \) for any \(\alpha_t > v \) and \(0 \leq \lambda_t \leq 1 \). By induction, we can the conclude that \(\alpha_{t+1} > v \) for all \(t \in \{0, 1, 2, \ldots\} \) and \((\alpha_0, \lambda_0) \in \Theta \).

Next, let us prove that \(0 \leq \lambda_{t+1} \leq 1 \) for all \(t \in \{0, 1, 2, \ldots\} \) and \((\alpha_0, \lambda_0) \in \Theta \). Let us first show that \(\lambda_{t+1} \geq 0 \) for all \((\alpha_t, \lambda_t) \in \Theta \). As \(\lambda_t \geq 0 \) for any \((\alpha_t, \lambda_t) \in \Theta \) and given (23-a), in order to show that \(\lambda_{t+1} \geq 0 \) for all \((\alpha_t, \lambda_t) \in \Theta \), we need to show that for all \((\alpha_t, \lambda_t) \in \Theta \) we have:

\[
(A-6.1) \quad (1 - \lambda_t) \left(1 - \delta\left(1 - \frac{v}{\alpha_t}\right) - (1 - v)\right) u_t^* \geq -1.
\]

We can set up the following lower and upper bounds for the profit share differential for any \(\alpha_t > v \):

\[
(A-6.2) \quad -(1 - v) \leq \pi_{s,t}^c - \pi_{n,t} = (1 - \delta)\left(1 - \frac{v}{\alpha_t}\right) - (1 - v) \leq v - \delta.
\]

From (A-6.1)-(A-6.2) and the fact that \(0 < u_t^* < 1 \) for all \(t \in \{0, 1, 2, \ldots\} \), we can write:

\[
(A-6.3) \quad (1 - \lambda_t)(\pi_{s,t}^c - \pi_{n,t}) u_t^* \geq -(1 - \lambda_t)(1 - v) u_t^* \geq -(1 - \lambda_t)(1 - v) = -1 + v + (1 - v) \lambda_t \geq -1.
\]

for any \((\alpha_t, \lambda_t) \in \Theta \). Hence, by induction, \(\lambda_{t+1} \geq 0 \) for all \(t \in \{0, 1, 2, \ldots\} \) and \((\alpha_0, \lambda_0) \in \Theta \).

Finally, let us demonstrate that \(\lambda_{t+1} \leq 1 \) for all \((\alpha_t, \lambda_t) \in \Theta \). Given (23-a), in order to establish that \(\lambda_{t+1} \leq 1 \) for all \((\alpha_t, \lambda_t) \in \Theta \), we need to demonstrate that:

\[
(A-6.4) \quad \lambda_t \left[1 + (1 - \lambda_t)(\pi_{s,t}^c - \pi_{n,t}) u_t^* \right] \leq 1.
\]

This inequality is trivially satisfied for \(\lambda_t = 0 \). For any \(\lambda_t > 0 \), we can re-write (A-6.4) as:

\[
(A-6.5) \quad (\pi_{s,t}^c - \pi_{n,t}) u_t^* \leq \frac{1}{\lambda_t}.
\]

We can again make use of (A-6.2) and conclude that for any \(\lambda_t > 0 \), we have:

\[
(A-6.6) \quad (\pi_{s,t}^c - \pi_{n,t}) u_t^* \leq (v - \delta) u_t^* < 1 \leq \frac{1}{\lambda_t}.
\]

This completes the proof that the state space \(\Theta \) is positively invariant, so that \((\alpha_t, \lambda_t) \in \Theta \) for all \(t \in \{1, 2, \ldots\} \) and initial condition \((\alpha_0, \lambda_0) \in \Theta \).