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Abstract

This paper addresses the issue of plant-level investment volatility in the context of
a purely convex model, where fluctuations are driven by technological shocks. The
aim is to assess the role of learning-by-doing in reproducing the well-documented
non-smooth investment dynamics at the plant-level, instead of relying on typical
non-convexities (fixed costs or indivisibilities) used to account for lumpy investment
behavior. The concept of organizational capital is essential in the analysis, and it
provides the channel through which learning affects production. Our results indicate
that learning-by-doing constitutes a potentially important source of investment
volatility at the plant-level, and that one should not believe that convex models
of investment necessarily deliver smooth dynamics.
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Resumo

A alta volatilidade nas taxas de investimento das firmas é tipicamente modelada
como resultado de não-convexidades (custos fixos ou indivisibilidades). Neste artigo,
investigamos até que ponto um modelo de decisão ótima de investimento puramente
convexo, porém acrescido de learning-by-doing e capital organizacional, é capaz de
gerar alta volatilidade nas decisões de investimento. Os resultados demonstram que
não é correto necessariamente identificar modelos de investimento convexos com
dinâmicas de investimento suaves, uma vez que a combinação de capital organizacional
e learning-by-doing é capaz de gerar considerável volatilidade na taxa de investimento.
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1. Introduction

The standard model of investment with ad hoc convex-adjustment costs is
unable to account for the investment dynamics observed at the plant-level. 1

Several empirical studies – Doms e Dune (1998), Sakellaris (2000), and
Caballero et alii (1995) – provide clear evidence that investment decisions
are much less smooth than convex-adjustment costs alone would imply.
Non-convexities and irreversible investment are listed in the literature as
important factors underlying such evidence.

In order to better assess the role of such factors, Cooper e Haltiwanger
(2000) look deeper into the nature of investment adjustment costs. They
implement an indirect inference procedure to recover structural parameters
for a hybrid investment model, obtaining estimates that support a mix of
irreversibility, convex and non-convex adjustment costs. Hence, the authors are
able to demonstrate that convex adjustment costs do play a role in explaining
investment dynamics.

In some sense, our paper tries to push this notion even further by
investigating what are the limits of a purely convex investment model, that is,
what else it can accomplish before we have to introduce non-convex features.
Combining the ideas of Rosen’s (1972) and Cooper e Johri (1999), we write
down a model advancing the message that learning-by-doing can work as
an endogenous mechanism for the propagation of technological shocks and
account for non-smooth investment behavior. The concept of firm-specific
organizational capital is also brought to light, as it becomes crucial for
motivating the increased responsiveness of the firm in our formulation.

An essential point should be made clear from start though. Whereas,
for instance, Cooper e Haltiwanger (2000) are fundamentally concerned
with formulating a model rich enough to match several moments of
the data (investment inactivity, asymmetric response to shocks and the
occurrence of investment spikes), we are interested in evaluating if firm-specific
learning-by-doing can induce high volatility in the investment behavior. 2

Thus, we are interested in investigating the possibility of matching one aspect
of the data, namely the investment spikes, without relying on fixed costs
or irreversibilities which are so often used when one needs to account for
non-convexities.

We set up a dynamic partial-equilibrium model in which a maximizing-profit
firm faces constant returns to scale technology, market power in its output
market, and competitive input markets. Organizational capital is treated
as firm-specific capital and it captures learning effects stemming from the

⋆
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1

We use the terms plant and firm interchangeably as referring to one single production unit.
2

Inactivity, for instance, cannot be accounted for in our model.
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repetitive use of physical capital as in Rosen (1972). We augment Rosen’s
formulation by allowing for depreciation of the organizational capital and by
introducing a temporary negative effect of newly added units of physical capital.
We then parameterize the model and perform a numerical simulation exercise.
The results have mainly qualitative significance and they are used to illustrate
the promises and limitations of firm-specific learning in accounting for the
volatility of the investment behavior at the plant-level.

The paper is structured as follows. Section 2 briefly sketches the central idea
of Rosen’s (1972) model and draws on it to suggest a new specification. We
then set up the maximization problem of the firm and obtain the associated
first-order conditions. Section 3 describes the numerical approach used to
calculate the policy functions and discusses the parameterization of the model.
Section 4 simulates the model and presents the results. Section 5 summarizes
the paper.

2. The Model

2.1. Rosen’s framework

Rosen (1972) models knowledge as a firm-specific capital good (H), which is
accumulated through experience during the use of a composite market input
(C). The jointly production process of market good (Y ) and firm-specific
knowledge (H) is formally described as:

Yt = Q (Ct, Ht) (1)

Ht+1 − Ht = φCt, φ > 0 (2)

Equation (1) makes explicit the role of knowledge as an input, whereas (2)
describes its evolution as a byproduct of experiences related to the use of the
composite input C. The parameter φ is a positive constant and it affects the
rate of learning from experience as well as the marginal product of knowledge.
Product and factor markets are assumed to be competitive and the production
function Q displays all usual properties of continuity and differentiability. Given
positive initial stocks of C and H , the optimizing firm maximizes the present
value of its profits by allocating inputs over its lifetime.

2.2. Modifying Rosen’s model

We draw on this basic framework to study the investment dynamics at
the firm-level. In order to do so, some modifications of Rosen’s model are
made. Clearly, the first one is to break down the composite input (C) into
physical capital (K) and labor (L). We also move away from the non-stochastic
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environment of Rosen’s Model, allowing for random technological shocks. The
production of the market good is then characterized by:

Yt = eAtF (Ht, Kt, Lt) (3)

where A denotes random (non-observable) technological shocks. Our next
modification augments the process according to which the firm-specific
knowledge is produced. Its motivation is twofold.

Firstly, as Rosen himself points out, the specification (2) does not yield
a stationary solution since H can grow forever. This fact restricts the
implementation of his model to finite horizon economies. By introducing a
depreciation rate to the stock of knowledge we overcome this problem. From
an economic perspective, postulating a negative aging effect over the stock of
knowledge makes sense if one believes that parts of this stock become useless
along the time. 3 Thus, depreciation of firm-specific knowledge and learning
from experience are opposite forces acting simultaneously over the production
process.

Secondly, Rosen’s model implicitly assumes that increases in the use of
inputs instantaneously lead to higher firm-specific knowledge. This assumption
is consistent with learning effects but it overlooks the possibility that, in the
short-run, changes in the level of input may cause temporary reduction in the
stock of firm-specific knowledge. Along the lines of the organizational capital
literature, one may argue that changing the ratio in which inputs are combined
has the short-run effect of disrupting the way production is organized, causing a
partial, though immediate, destruction of the firm-specific knowledge stock. As
time goes by, such disruption eventually dies out and learning from experience
pays off.

Alternatively, one could also argue that the process of capital adoption
implies first-time costs for new investment. In this case, there would be an
additional learning story going on according to which newly added units of
capital would embody technological change and would require time to be fully
productive. This reasoning is consistent with the work of Parente (1994) and
Jovanovic e Nyarko (1996) on costly adoption of new technologies. Then, there
would be learning effects in capital adoption together with the learning effects
coming from experience. In order to address such possibilities, we adopt the
following law of motion for H :

Ht+1 − Ht = −δHHt − γIt + φKt, γ > 0, φ > 0, φ > γδK (4)

3
This is the case when employees develop expertise over certain procedures that must be

abandoned or substantially modified for reasons exogenous to the firm. For instance, skills on
DOS syntax acquired over the eighties were rendered virtually useless by the widespread use
of operational systems with graphic interfaces over the nineties. Alternatively, Benkard (2000)
rationalizes this phenomenon as an organizational forgetting feature typical of long production
lines and provide supporting empirical evidence for the case of aircraft production.
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where δH , γ and It denote, respectively, the depreciation rate of H , a positive
constant that parameterizes the degree of short-run disruption caused by
investment (or the costly adoption of embodied technology), and investment
itself. The positive constant φ is the same used previously and the last inequality
above will be explained later.

Equation (4) augments equation (2) by introducing a depreciation rate to H
and allowing for a one-period disruption effect of investment over the stock of
knowledge. Note that any investment decision leads to two conflicting forces.
The first one is long-lasting and it operates through a higher stock of physical
capital, which leads to higher learning effects as in the Rosen’s Model. The other
one is effective only during the immediate subsequent period of the investment
decision and it is responsible for a partial destruction of the firm-specific stock
of knowledge, reflecting the costs of reorganizing production or, alternatively,
learning effects in capital adoption.

As pointed out by Cooper e Johri (1999), the introduction of knowledge
and learning-by-doing enriches the propagation mechanism of the technological
shock. This fact brings important consequences for the firm’s investment
decision in response to shocks and, in this context, we investigate to what
extent a richer formulation can compensate for the lack of non-convexities when
explaining spikes in investment behavior.

2.3. The firm’s problem

Before writing down the firm’s maximization problem, we further specialize
our formulation by assuming the following constant returns to scale technology
for the market good:

Yt = eAtHαH

t KαK

t LαL

t , αH + αK + αL = 1 (5)

We also assume that the firm has some degree of market power and that it
faces the following downward demand curve:

Dt = λθ
t , θ < 0 (6)

where D stands for demand, λ for the price of the market good and θ for the
corresponding demand elasticity. The relevant market clearing condition allows
us to write the total revenue function as: 4

4 Total revenue is given by price times quantity (λtYt). Solving the demand curve
(equation 6) for prices and using the fact that, in equilibrium demand equals
production (Dt = Yt), the total revenue can be written as

(Yt)
1/θ

Yt = Y
(1+θ)/θ
t

.
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R(At, Ht, Kt, Lt) = [eAtHαH

t KαK

t LαL

t ]
θ+1

θ (7)

Finally, the firm maximizes its discounted stream of profits taking as given
the factor prices, the demand elasticity for the market good and the evolution
of its state variables.

Max
{Ht,Kt,Lt,It}

∞

t=0

E0

∞
∑

t=0

βt [R(At, Ht, Kt, Lt) − pIt − wLt] (8a) (8)

st Kt+1 = (1 − δK)Kt + It (8b)

Ht+1 = (1 − δH)Ht − γIt + φKt, γ > 0, φ > 0 (8c)

At+1 = ρAt + ǫt, |ρ| < 1, ǫt ∼ iidN(0, σ2) (8d)

φ > γδH (8e)

K0 > 0, H0 > 0 (8f)

As it is clear in the formulation above, we adopt a standard law of motion
for the physical capital stock (8b) and a first-order autoregressive process
for the technological shock (8d). Equation (8c) describes the evolution of the
organizational capital and it provides the channel through which learning and
disruption effects affect the firm. Initial conditions are given by (8f).

The inequality (8e) is important to ensure a well-behaved solution to
the model by avoiding negative values for the value function. Its economic
interpretation is that the amount of disruption caused by new additions of
physical capital (or alternatively, the learning costs associated with capital
adoption) is bounded by the amount of learning stemming from experience. If
this was not the case, the organizational capital could converge to zero, and
the firm’s production would collapse.

In order to solve this problem, we set up the Bellman Equation associated
with (8a–f): 5

V (A, H, K) = Max
I,L

{R(A, H, K, L) − pI − wL + βEV (A′, H ′, K ′ )}

st K ′ = (1 − δK)K + I

H ′ = (1 − δH)H − γI + φK

A′ = ρA + ǫ, |ρ| < 1, ǫ ∼ iidN(0, σ2)

φ > γδH , K0 > 0, H0 > 0

5
In what follows, time subscripts are omitted and one-period-ahead variables are denoted with a

prime.
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The first-order conditions with respect to investment (I) and labor (L) are,
respectively:

β [EVK(A′, K ′, H ′) − EVH(A′, K ′, H ′)γ] = p (9)

RL(A, H, K, L) = w (10)

The envelope conditions associated with the state variables H and K are,
respectively:

VH(A, H, K) = RH(A, H, K, L) + βEVH(A′, H ′, K ′)(1 − δH) (11)

VK(A, H, K) = RK(A, H, K, L) + β
[

EVK(A′, H ′, K ′)(1 − δK) (12)

+ EVH(A′, H ′, K ′)φ
]

3. Model Evaluation and Parameterization

In order to evaluate the implied investment dynamics, we obtain the
optimal policy function for investment by implementing a linear-quadratic
approximation of the model. The first step of this approach is to numerically
calculate a second-order Taylor approximation of the objective function around
the steady state of the model. 6 After that, we obtain the first-order conditions
by again numerically evaluating the relevant derivatives. This procedure yields
a convenient linear policy function of the form: 7

It = λ0 + λ1At + λ2Kt + λ3Ht (13)

Unfortunately, the variable H is non-observable, making the identification of
parameters like γ and φ a non-trivial issue. Since the coefficients of the optimal
policy function depend on the parameters of the model, we have to be careful
about the generality of our statements. Ideally, one should turn to econometric
techniques capable of producing estimates of these parameters. Though this
seems to be a promising route, we believe that pursuing it would take us deep
into econometric issues and far from our main theoretical point.

Hence, instead of directly estimating the parameters of the model, we assign
sensible values for them. By sensible values we mean estimates found in the
literature that, even though not fully consistent with the specification of our
model, provide some sense as to what is reasonable to assume.

6
The term steady state refers to the equilibrium values obtained analytically from the system

(9)-(12), when the stochastic technological shock is set equal to its unconditional mean, which is
zero – see Appendix.
7

Obviously, this model has two policy functions: one for investment and the other for labor
demand. In this paper, we are focusing solely on the investment decision.
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The discount factor β is set to 0.93, which is consistent with an annualized
interest rate of 6.5%. The input shares for physical capital (αK), labor (αL), and
organizational capital (αH) are set to 0.18, 0.72 and 0.04, respectively. These
values were calculated by Atkeson e Kehoe (2001), and they were obtained
for the U.S. manufacturing sector during 1959-99. The demand elasticity (θ) is
assumed to be −4.8 and it is based on estimates of Cooper e Haltiwanger (2000)
using LRD plant-level data. The depreciation rate of physical capital (δK) is
assumed to be 0.07. We set the depreciation rate of organizational capital (δH)
and the learning rate (φ) to 0.39 and 0.35, respectively. These numbers are
based on estimates of Benkard (2000).

As to the technological shock, we set its persistence (ρ) and standard
deviation (σ) to 0.71 and 0.09, respectively. 8 Finally, the investment disruption
rate (γ) is left as a free parameter and we use it to investigate the ability of our
model to match the occurrence of investment spikes (defined as a investment
to capital ratio around 20%).

4. Computational Experiment

We focus on the investment to physical capital ratio (I/K) in order to study
the investment dynamics implied by our model. As a direct consequence of
our stochastic environment in which the firm is hit by a technological shock
each period, this ratio will be always fluctuating. We illustrate our results by
simulating the model and graphing the behavior of the variable I/K over time.

The simulation of the model can be briefly described as follows. First we
generate 145 observations of the technological shock (A) and assume initial
conditions for the endogenous state variables K and H . 9 Once this is done, the
state-space for period 1 is completely determined and the policy functions will
pin down the optimal investment and labor demands in that period. Following
that, the state-space of period two will be also completely determined and
the optimal behavior for that period is once again easy to calculate given the
policy functions. This process goes on until the entire path of K, H, I and L is
obtained for the 145-time period.

In order to simulate the model, we make use of the parameterization carried
out in the last section. As the reader might recall, we left the disruption rate (γ)
as a free parameter, and in this simulation exercise we consider three different
values for it. Thus, we perform three distinct simulation exercises out of the
same draw of innovations ǫ, encompassing some interesting polar cases. This
approach is helpful for qualitatively assessing the promises and limitations of
firm-specific learning in accounting for investment spikes at the firm-level. Table

8
Theses numbers were kindly provided by John Haltiwanger and correspond to typical values

found in plant-level data for the US.
9

To mitigate spurious dynamics introduced by setting bad initial conditions, we simulate the
model for 245 periods and then throw away the first 100 periods. This procedure is usually justified
by assuming that the economy (firm in this case) is not far away from its stationary equilibrium.
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1 ahead brings the values of γ we used, all other parameters are the same as
given in the last section.

Table 1

Simulation 1 γ = 0

Simulation 2 γ = 1.3

Simulation 3 γ = 3

Figure 1 in the Appendix depicts the first simulation and it corresponds
to the situation in which there is no disruption coming from investment (or
alternatively, there are no costs involved in capital adoption). In this case,
there is excessive volatility in the investment to capital ratio. Indeed, Cooper e
Haltiwanger (2000) and Sakellaris (2000) present evidence that the investment
spikes observed in the data are much smaller (around 20%).

It is interesting to mention that we adopted the same standard deviation for
the technological shock that Cooper e Haltiwanger (2000) used, and the authors
showed that the standard convex adjustment cost model would generate an
excessively smooth investment dynamics under sets of parameters commonly
assumed in the literature. In particular, the investment to capital ratio would
not go higher than 8% in the standard ad hoc adjustment formulation, while
our model can generate spikes of almost 80%. This suggests the importance of
firm-specific learning in amplifying the volatility of investment decisions even
when no departure from convexity is allowed.

The fact that our model is able to produce such high and counter-factual
investment spikes highlights the relevance of the disruption effect. In simulation
2 (see Figure 2 in the Appendix) the disruption channel is turned on and we
pick a value for γ which makes the size of the investment spikes fairly consistent
with the data. Thus, our model suggests that learning effects alone (without
allowing for the disruption channel) generate an excessively volatile dynamics,
and that a positive value for γ seems to be crucial for matching the dynamics
observed in the data.

Simulation 3 (see Figure 3) illustrates a polar case by picturing an extremely
non-responsive investment dynamics when the disruption effect is set to be
sufficiently high. Its interesting to mention that this case fairly replicates
the volatility of the standard ad hoc adjustment cost model, but it has the
advantage of making explicit the source of the costly adjustment in the capital
stock.

The results indicate that our model can produce high volatility in the
firm’s investment behavior without resorting to non-convexities. This high
volatility stems from the combination of learning-by-doing and organizational
capital, but it is important to understand precisely how these two assumptions
interact. In any model where technological shocks are present, a positive draw
induces firms to demand higher levels of inputs. However, in our formulation,
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the presence of learning effects creates an additional benefit of investing in
physical capital. In particular, such investment directly increases the stock of
two production factors:

(i) the physical capital stock itself and
(ii) the organizational capital.

This fact amplifies the effects of the technological shock over the firm’s
investment decision and leads to the higher volatility observed in our model.

5. Conclusions and Extensions

We combined learning-by-doing and organizational capital within a purely
convex investment model. Our intention was to evaluate how much investment
volatility at the plant-level could be generated by the learning-by-doing
hypothesis regardless of any underlying non-convexity. The results indicated
that learning-by-doing can be particularly powerful in producing non-smooth
investment behavior. This conclusion should not be taken to mean that
non-convex costs or indivisibilities are not relevant, but rather that one should
not naively believe that convex investment models necessarily imply smooth
dynamics. In this context, a meaningful extension of the research presented
here would be to devise empirical identification strategies capable of isolating
the true role of non-convexities (net of learning effects) in explaining investment
spikes at the plant-level.
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Appendix

Because the firm is hit by a technological shock every period, this model does
not present a “resting-point” steady state. Instead, it converges to a stationary
distribution in which the firm responses are equilibrium fluctuations naturally
emerging from the stochastic environment. Thus, the term steady state used in
the paper refers to the steady state of the “certainty version” of the model –
that is, when the technological shock is set to its unconditional mean (which is
zero). This steady state is used in the numerical approximations and it can be
analytically calculated from the following expressions (which are derived from
the first-order conditions and the law of motion for the state variables):

Ω1RK(H̄, K̄, L̄) + Ω2RH(H̄, K̄, L̄) = p

RL(H̄, K̄, L̄) = w

K̄δK = Ī

H̄δH = (φ − γδK)K̄, φ > γδK

where

Ω1 =
β

1 − β(1 − δK)

Ω2 =
β(φβ − γ(1 − β(1 − δK)))

(1 − β(1 − δK))(1 − β(1 − δH))

R(H̄, K̄, L̄) = [H̄αH K̄αK L̄αL ]
θ+1

θ
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