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1. Introduction
There is consensus among many that asset bubbles have damaging effects on real and financial variables through the monetary policy analytical channels, i.e. the wealth and credit constraints effects on consumption and investment.  However, whether central banks should respond to asset prices movements is still a controversial issue (see Roubini, 2006).  The prevailing viewpoint of the US Federal Reserve, for instance, is that nothing can be done about rising bubbles and everything needs to be done to avoid the damage of bursting bubbles.  Monetary policy should not preemptively react to an asset bubble that is uncertain and thus difficult to track and “prick”, but should strongly react after the bubble bust.  Yet a number of theoretical models challenge this view by suggesting that an optimal monetary policy should react to asset prices beyond the deviation of output and inflation from target (see Roubini, 2006 and references therein for an overview of the debate; extra works on the subject are also shown in Table 1).
Nevertheless, in the model of Bernanke and Gertler (2001) if the central bank is committed to inflation targeting it is not generally desirable that monetary policy reacts to asset prices movements, unless the latter also affect expected inflation.  This contrasts with the models in Cecchetti et al. (2000, 2003), who argue that though asset prices should not be the main focus in an inflation target regime, if agents anticipate that the monetary policy is leaning against the wind there is still room for successfully counteracting asset price bubbles.  The results of Bernanke and Gertler (2001) were found in the context of nonoptimizing monetary policy rules.  Thus it has been suggested that they are not robust with respect to optimal policy rules (Filardo, 2004).  Here we will contribute to the debate by considering a dynamic stochastic model (where the policy rule is chosen optimally) along with stock prices data from 22 emerging markets.  We will show that the view of Bernanke and Gertler receives partial support from the data for the countries that adopted inflation target regimes.
In our model the central bank minimizes an intertemporal loss function subject to a linear stochastic equation system representing the economy.  We will find that disregarding the stock prices minimizes the central bank loss function for the countries that adopted inflation targets.  By contrast, considering the stock prices in the central bank reaction function minimizes inflation variance for the countries that adopted an accommodative policy regime.

The rest of the paper is organized as follows.  Section 2 will present our model in two versions, namely one that includes the stock prices and one that disregards them; the model will then be solved for both variants.  Section 3 will present our data set from the 22 emerging markets.  The data will be used to calibrate the alternative models in Section 4.  Section 5 will describe our results, and Section 6 will conclude.  The details of the model optimization will be relegated to an appendix.
2. Modeling
To assess whether the authorities should consider the stock prices in their monetary policy decisions we take an optimal policy rule model whose solution is an interest rate reaction function.  The model can be used to simulate the central bank optimal policy decision through adjustments of the control variable (the monetary policy tool) in a series of time periods.
In the unrestricted version of the model the stock prices enter the central bank reaction function; in the restricted version the stock prices are left out.  The model equations assume a small open economy.
2.1. Model with stock prices
In the unrestricted version the central bank minimizes an intertemporal loss function subjet to a system of linear stochastic equations representing the economy, i.e.
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Equation (1) is a deterministic loss function for a number of finite time periods, 
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 is the central bank discount rate, and 
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 are the penalties associated with the deviations of inflation from target 
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 respectively.  Minimizing inflation and output gap variability posits a tradeoff.  If the central bank chooses a strict inflation target policy then 
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 the central bank is committed to the joint objectives of dampening inflation and output gap variability.
Equations (2) and (3) are demand and supply functions respectively.  Those extend the ones in the inflation target model of Rudebusch and Svensson (1999).  The demand function relates output gap with past output gap 
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Equations (4) and (5) show that real exchange rate changes and stock returns relate to the nominal interest rate as well as present first order autoregressive components, i.e. 
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.  Interest rate rises make domestic stocks more attractive, appreciate domestic currency, and then reduce stock prices.  The financial shocks 
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Equations (2)((5) track the monetary policy transmission mechanism through the stock prices because the optimal interest rate is adjusted not only to minimize both inflation deviation from target and output gap but also to influence the exchange rate and stock prices.  The exchange rate and stock prices affect output gap, which in turn influence inflation; in other words, the financial variables affect inflation indirectly through their impact on output gap.
2.2. Model without stock prices
The alternative version of the model is given by
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Equation (6) is obtained from equation (2) after dropping the stock prices; this means that the latter no longer influence output gap.  While equation (5) is dismissed in this version of the model, exchange rate changes still affect output gap (as in Ball, 1999, Batini and Nelson, 1999, and Svensson, 2000).
2.3. Solving the models
The model versions in Section 2.1 and 2.2 can be rewritten as an optimal control problem as follows.
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Loss function (7) is minimized subject to the first order difference equation system (8).  The 
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 is a symmetric diagonal matrix representing the penalties related to the deviations of a variable from target (the elements of the diagonal are zero for the lagged variables and positive for the endogenous variables chosen to enter the loss function), 
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 is a vector of parameters, and the stochastic disturbance vector 
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 is serially uncorrelated with mean zero and covariance matrix 
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 refers to the transpose.  The 0 subscript of the expectations operator in (7) means that the loss is minimized assuming vector 
[image: image48.wmf]0

y

 as an initial condition.  Despite the time subscripts we assume 
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 to be constant over time (and also 
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 as we will see below).  Since we have chosen a deterministic loss function for analytical convenience, we have also to accept the choice related opportunity cost, i.e. we will get only an approximate solution to the problem.

We apply the Langrange multiplier method for the dynamic optimization alghorithm to find results that are similar to those from the Bellman dynamic programming method.  The resulting reaction function is a linear function of current and one-period lagged endogenous variables, i.e.
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where 
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 is the matrix of coefficients representing the sensitivity of the control variable to the arguments in the reaction function, and 
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 is the reaction function intercept vector.  To calculate the reaction function each period one just needs to find 
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The two alternative models above can be rewritten in matrix notation:
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Table 2 shows the reduced forms.  Since the values of matrices 
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and
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for 
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 is constant means that the central bank does not change its preferences over four periods regarding the relative importance of inflation and output.  However, the central bank targets are allowed to change.  Using 
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After optimization, the interest rate reaction function of the model with stock prices is given by
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where 
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.  For the model without stock prices the optimal reaction function is
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where 
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 one can get the optimal reaction functions each period.  The details of the optizimation procedure are presented in the Appendix.
3. Data
We collected quarterly data from Datastream for 22 emerging countries in the Standard & Poors’ Emerging Markets Data Base.  The countries were as follows.  Argentina, Brazil, Chile, China, Colombia, Czech Republic, Indonesia, India, Israel, Korea, Malaysia, Mexico, Peru, the Philippines, Poland, South Africa, Russia, Sri Lanka, Thailand, Taiwan, Turkey, and Venezuela.  Table 3 presents every sample’s time periods.  Consumer price indices were taken from the IMF’s International Financial Statistics.  The other variables were stock prices, as measured by a country’s stockmarket index, gross domestic products and industrial outputs, nominal interest rates, and real exchange rates.  Interest rates were money market rates and either interbank or discount rates for the countries where money market rates were not available.  The real exchange rates were calculated using the dollar price in terms of a country’s currency discounted by the difference between a country’s inflation and that of the United States.

Analysis was performed with the natural logs of the variables.  Output data were deseasonalized using the X-11 ARIMA method, and the output gap was found using the potential output estimated by Hodrick-Prescott filter with smoothing constant of 1600.
4. Calibration
Rather than adopting a purely analytical approach, we decided to employ the data to calibrate the model parameters in Section 3, and then resume analysis.  We used a panel model with fixed effects considering standard errors robust to heteroskedasticity and autocorrelation.  The t-statistic was reckoned for every coefficient with the significance levels of up 10 percent.  Once a model was estimated, dummies considered important to capture outliers and currency crisis shocks as well as to remove heteroskedasticity and lack of normality were included in some cases.  Akaike and Schwarz diagnostic tests were performed to help us decide where to include either a dummy or constant of an estimated equation.  Table 4 shows the results of the estimated regressions.
Overall most of the coefficients were statistically significant and theoretically consistent.  The inflation and output gap coefficients were positive and real exchange rate changes did not enter the reaction function of the model without stock prices.  The financial variables entered the reaction function of the model with stock prices, which also presented greater interest rate sensitivity to inflation and output gap.
The estimated IS equations of the two model versions showed that the financial variables contemporaneously impact output gap.  The lagged values of the dependent variable also presented some persistence with average coefficients of nearly 0.6.  The estimated Phillips curves showed that the output gap coefficient was statistically significant in explaining inflation in the emerging countries.  The estimated lagged coefficient of the dependent variable also showed that on average there is some persistence of past inflation on current inflation.  The interest rate was also statistically significant in the equations for stock prices and real exchange rates.  This means that foreign exchange and stock markets act as transmission channels for monetary policy.

5. Empirical results
After considering the data from emerging countries the optimization results for the loss and reaction functions described in Section 2 are given in Table 5.  Table 5A shows the results for the model with stock prices, and Table 5B presents the results for the model without stock prices.  Because we considered quarterly data and the optimization was performed annually, the reaction functions were estimated for four periods.  Possible discrepancies in the definition of the optimal interest rate could be assessed through comparisons between the reaction functions across periods.  The annual loss function was then the sum of the estimated losses each period, i.e. 
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Reaction function (9) depends on both the coefficient matrix 
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 we need to know the values of the targets 
[image: image118.wmf]t

a

.  The output gap target is set by definition at zero.  However the inflation target, if any, varies across countries.  Following Fischer (1996), here we set the inflation target at 0.5 percent per quarter (nearly 2 percent a year).  The initial conditions are set at the endogenous variables’ values at the fourth quarter of 2006.
We consider two types of central bank preferences, namely (1) explicit inflation target, i.e. aggresive reaction to the deviations of inflation from target (
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) without too much concern with output gap (
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), and (2) no inflation target, i.e. accomodative reaction to the deviations of inflation from target by equally penalizing the deviations of inflation and output gap (
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).  Table 5 shows the results in the two alternative models for the loss functions in both monetary policy regimes.  As expected, the interest rate sensitivity to past inflation was always positive.  This means that the central banks reacted by raising the nominal interest rate whenever there was inflation in the previous period.  In the model with stock prices the inflation rate coefficients were found to be greater than one, which means large interest rate sensitivity to inflation.  The central banks’ reaction to output gap was found to be positive and less than one, which means that interest rate increases impact output negatively.  Yet current output also depended on past output and thus a rise in interest rates did not necessarily make current output inferior to past output.  Also, the real exchange rate did not take part of the model without stock prices.  This means that only in the model with stock prices the interest rate increases made domestic stocks relatively more attractive and thus appreciated domestic currency.  In the model without stock prices there was low temporal sensitivity of the coefficients in the arguments of the reaction function.  Yet in the model with stock prices the coefficients changed between the first and the fourth optimization period.  As for the minimization of the loss function, the best monetary policy regime for the emerging countries adopting an explicit inflation target was not to include the stock prices in their central banks’ reaction function.  However, considering the stock prices in the reaction function seems to minimize the loss function under a regime of no inflation target.
6. Conclusion
Using a optimal control model framework this paper considered two alternative models, one with stock prices and one without stock prices to evaluate whether monetary policy decisions should respond to movements in stock prices.  This question was assessed after calibrating the model parameters with data from 22 emerging countries.
In the models, the central bank adjusts the interest rate each period so as to minimize an intertemporal loss function subject to a stochastic linear equation system that tracks the major characteristics of the emerging economies.
Overall our results showed that it is optimal for the central banks adopting explicit inflation targets not to consider stock price movements, that is, disregarding the stock prices minimizes the central bank loss function.  By contrast, it is optimal for the central banks with no inflation target to consider the stock prices in their reaction function because this minimizes inflation variance.
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Appendix
Here we present the details of the optimal control problem through the Lagrange method.  The optimal rule problem can be represented by
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Forming the Lagrangean by introducing vector 
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Then we set all of its first-order partials equal to zero:
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where 
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To solve the system (A4) through (A6) we first consider 
[image: image145.wmf]t

t

=

 and then repeat the four steps to be presented below for 
[image: image146.wmf]1, 2, , 1

t

ttt

=--=

K

.  The first step is to write 
[image: image147.wmf]t

λ

 as a function of 
[image: image148.wmf]t

y

 using equation (A4).  Then we employ the initial conditions 
[image: image149.wmf]tt

=

HK

 and 
[image: image150.wmf]ttt

=

hKa

 for 
[image: image151.wmf]1

0

t

+

=

λ

 to get

[image: image152.wmf]11

T

tttttttttt

++

=-+=-

λKyKaAλHyh

                                                             (A7)

The second step is to write 
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.  Substituting (A6) and (A7) into (A5) yields
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The third step is to write 
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Then substituting (A12) into (A7) yields
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The final step is to find an equation similar to (A13) for 
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The routine above from (A9) through (A16) goes on by replacing 
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Having found the reaction function, we can find inflation deviation from target and output gap.  The deterministic loss function
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can be found using the result
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Equation (A18) is first calculated for 
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Observe that the calculation of the interest rate depends on the initial conditions and inflation and output targets arbitrarily chosen.  However, it is not critical finding the optimal interest rate each period.  By contrast, the calculation of matrices 
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 does not depend on the initial conditions and targets.  Thus, interest rate sensitivity to lagged inflation, output, and exchange rate independs of the initial condition and targets.  The targets influence only the reaction function intercept, that is, the matrices 
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[image: image184.wmf]4,

t

q

 (in the model without stock prices) of matrix 
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 are always zero in equations (12) and (13).  This means that current interest rate is insensitive to previous interest rate.  Thus the central bank is free to choose the best interest rate in 
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 taking into account its effects both in 
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 and the subsequent time periods.
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Table 1. Asset prices and monetary policy: selected recent work
	Authors
	Results

	Gilchrist and Leahy (2002)
	Central banks should not respond to asset price movements.

	Alexandre and Bacao (2002)
	Central banks should respond to stock price movements that are caused by financial shocks rather than demand-supply shocks.

	Mishkin and White (2002)

Schwartz (2003)
	Central banks should monitor the effects of asset price movements on financial stability, but that does not mean prompt response to them.

	Rigobon and Sack (2003)
	Central banks should respond to asset price movements that affect aggregate demand.

	Chadha et al. (2004)
	Central banks should pay attention to the deviations of asset prices and exchange rates from equilibrium because such variables help to forecast expected inflation and output gap; however, asset prices and exchange rates should not be considered as arguments in the monetary policy rule.

	Kontonikas and Ioannidis (2005)
	Central banks should respond mildly to asset price movements under the Taylor rule and inflation targeting.

	Akran et al. (2006)
	Central banks should include asset prices (but not exchange rates) in their monetary policy rule to ensure macroeconomic stability.

	Kontonikas and Montagnoli (2006)
	Central banks should be aware that asset prices play an independent role in the presence of wealth effect and inefficient markets; thus asset prices are not mere predictors of inflation and output.


Table 2. Reduced form equations
	Equation
	Endogenous variable
	Intercept
	Lagged endogenous variable
	Control variable
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Table 3. Sample

	Country
	Time Period

	Argentina
	1990Q1–2006Q4

	Brazil
	1990Q1–2006Q4

	Chile
	1990Q1–2006Q4

	China
	1990Q1–2006Q4

	Colombia
	1990Q1–2006Q4

	Czech Republic
	1993Q1–2006Q4

	Indonesia
	1990Q1–2006Q4

	India
	1990Q1–2006Q4

	Israel
	1993Q1–2006Q4

	Korea
	1990Q1–2006Q4

	Malaysia
	1990Q1–2006Q4

	Mexico
	1990Q1–2006Q4

	Peru
	1994Q1–2006Q4

	The Philippines
	1990Q1–2006Q4

	Poland
	1994Q1–2006Q4

	South Africa
	1990Q1–2006Q4

	Russia
	1994Q2–2006Q4

	Sri Lanka
	1996Q1–2006Q4

	Thailand
	1990Q1–2006Q4

	Taiwan
	1990Q1–2006Q4

	Turkey
	1990Q1–2006Q4

	Venezuela
	1990Q1–2006Q4


Table 4. Parameters’ fixed-effect panel estimation robust to heteroskedasticity and autocorrelation

	Equations
	Coefficients

	
	Constant
	Output gap
	Inflation rate
	Interest rate
	Exchange rate
	Stock prices
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Notes:
* significant at 10 percent, ** significant at 5 percent

All variables are stationary at the 5 percent significance level
The values in brackets are t-statistics
Table 5. Results for the alternative models
	A. Model with stock prices

	Monetary policy regime
	Control variable
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	B. Model without stock prices

	Monetary policy regime
	Control variable
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