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Resumo. Usamos modelos de macro finanças para estudar a interação entre variáveis macro e a
curva de juros soberanos do Brasil usando dados diários, de modo a aferir probabilidades de default
implícitos do modelo estimado e que impacto choques macro teriam nessas probabilidades. Uma
estratégia de identificação de modelos com fatores latentes e observáveis baseado na abordagem de
Dai-Singleton é proposto de modo a estimar nossos modelos. Entre as varáveis testadas para a
nossa amostra e horizonte, VIX é o fator macro mais importante afetando títulos de curto prazo
e probabilidades de default, enquanto a taxa curta americana é o fator mais importante a afetar
probabilidades de default de longo prazo.

Abstract. We use macro finance models to study the interaction between macro variables and
the Brazilian sovereign yield curve using daily data, in order to assess default probabilities implied
from the estimated model and what impact macro shocks would have on those probabilities. An
identification strategy for models with latent and observable factors based on Dai-Singleton approach
is proposed in order to estimate our models. Among the tested variables for our sample and horizon,
VIX is the most important macro factor affecting short term bonds and default probabilities, while
the FED FUND short rate is the most important factor affecting the long term default probabilities.

JEL Classifications: C13, E44, G12

Área 7 - Microeconomia, Métodos Quantitativos e Finanças
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1 Introduction
Credit risk is an important component of the yield curve of emerging countries. It is linked to some
payment obligation and the possible failure of the obligor to honour it, thus affecting the required yield
rate a government will face in order to finance itself. This measure will also be of great importance
for emerging market firms, since the foreign financing will typically contain the country risk. Firm
borrowing rates are usually higher than sovereign rates. Hence, we are led to ask the following
questions: What are the factors most affecting the sovereign yield rates? Which variables causes
greater impact on default probabilities? We present an empirical investigation using affine term
structure models with macro factors and default motivated by such questions.
There are two main lines of credit risk models, the structural and the reduced. In all models, the

price of the defaultable bond will depend on the probability of default and on the expected recovery
rate upon default. Giesecke (2004) provides a short introductory survey. Black and Scholes (1973)
and Merton (1974) initiated the field by proposing the first structural models using option theory.
Black and Cox (1976) introduced the basic structural model in which default occurs at the first time
the process of the firm’s assets crosses a given a default barrier. Many articles were built extending
Black and Cox model. More recently, second generation models were introduced by Leland (1994) and
Leland and Toft (1996) in which the firm’s incentive structure is modelled to determine the default
barrier endogenously, obtaining as a result its optimal capital structure. Default occurs when the
structure of incentives suggests that it is optimal to the issuer to default or when the payment is
impossible. This happens at the time the value of the shares falls to zero.
However, the cited articles treat the corporate credit risk case. The sovereign credit risk differs

markedly from the corporate. Some possible reasons for this, taken form Duffie et al (2003), are listed
below:

• A sovereign debt investor may not have recourse to a bankruptcy code at the default event.
• Sovereign default can be a political decision. There exists a trade-off between the costs of making
the payments and the costs of reputation, of having the assets abroad seized or of having access
to international commerce impeded.

• The same bond can be renegotiated many times. Some contracts have cross-default or collective
action clauses. Assets in the country cannot be used as a collateral.

• The government can opt for defaulting on internal or external debt.
• Also, one must take into account the role played by key variables such as exchange rates, fiscal
dynamics, reserves in strong currency, level of exports and imports, GDP, inflation and many
other macro variables.

Therefore, constructing a structural model for the case of a country is a more delicate question. It
is not obvious how to model the incentive structure of a government and its optimal default decision,
or what “assets” could be seized upon default. Moreover, post-default negotiation rounds regarding
the recovery rate can be very complex and uncertain.
Not surprisingly, then, it is difficult to find structural model papers in the sovereign context.

Exceptions are Moreira and Rocha (2005) and Ghezzi and Xu (2002). We opt for using reduced
models, where the time of default is not directly modelled (see Schönbucher, 2003). It is a totally
inaccessible stopping time which is triggered by the first jump of a given exogenous process with
default intensity λ. A totally inaccessible stopping time is defined in the following. A predictable
stopping time τ is one for which there exists a sequence of announcing stopping times τ1 ≤ τ2 ≤ . . .
such that τn < τ and lim τn = τ for all ω ∈ Ω with {τ(ω) > 0}. In the structural models, if the
evolution of the assets follows a Brownian diffusion, then default time is a predictable stopping time.
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A stopping time is totally inaccessible if no predictable stopping time τ 0 can give any information
about τ : P[τ = τ 0 < ∞] = 0. Thus, in the case of the reduced model, the default always comes as a
“surprise”. This characteristic adds more realism to the modelling. Duffie et al (2003) shows that the
MinFins, Russian sovereign bonds, had a price drop of around 80% in the days immediately following
the announcement of the default of the Russian domestic bond GKO in 1998.
Lando (1998) and Duffie and Singleton (1999) developed versions of reduced models in which the

default risk appears as an additional instantaneous spread in the pricing equation. The spread can
be modelled using additional state factors. In particular, it can be incorporated in the affine model
of Duffie and Kan (1996), a largely used model offering a good compromise between flexibility and
numerical tractability.
Duffie et al (2003) analyzes the case of the Russian bonds extending the reduced model to include

the possibility of multiple defaults (or multiple “credit events”, such as restructuring, renegotiation or
change of regime). After estimating the model for the risk free reference curve on a first stage and then
for defaultable Russian sovereign bonds on a second, they use model implied spreads to examine, for
instance, what are the determinants of the spreads, what is the degree of integration between different
Russian bonds and what is the correlation between the spreads and the macroeconomic series. They
estimated the model in two steps: first the parameters relative to the FED yield curve, then those of
the Russian yield curve. Another paper applying reduced model to emerging markets is Pagès (2001).
Duffie et al (2003) and Pagès (2001) only use latent variables. Since macro factors are not explicitly

inserted as state variables, they cannot directly affect the latent factors. Also, the impact of changes
of bond yields in macro factors cannot be measured within the model.
Ang and Piazzesi (2003) were the first to estimate a term structure model with macro factors

alongside latent factors in a discrete time affine model. They incorporate different Taylor rules into
the short rate equation used in no arbitrage pricing. In their model, the macro factors affect the
entire yield curve. However, the interest rates do not affect the macro factors, which means the
monetary policy is ineffective. They estimate in 2 steps: first the macro dynamics and then the latent
dynamics conditional on the macro factors. Ang et al (2005) estimate another specification without
this drawback using Monte Carlo Markov Chain. A Macro Finance literature has quickly emerged
since their work (see Diebold et al, 2005).
Amato and Luisi (2005) use a three-step procedure in a model with macro factors and default risk

that addresses the corporate case. First the reference curve, then the macro parameters, and finally
the spreads are estimated in a conditional way. However, this has again the restrictive condition that
the macro factors are not affected by the yield curve, and the conditioning in multiple steps may lead
to sub-optimal solutions.
Our model incorporates the advances brought by the above lines of research to study the impact of

macro factors on a defaultable term structure. We provide the comparison among many trial models in
the search for the macro factors that influence credit spreads and default probabilities the most. Also,
using Ang and Piazzesi’s approach, we can use impulse response and variance decomposition techniques
to analyze the direct influence of observable macro factors on prices and default probabilities. In pure
latent models, the unobservable factors are abstractions that can, at best, be interpreted as geometric
factors summarizing the yield curve movements, as seen in Litterman and Scheinkman (1991).
However, before estimating the parameters, one must choose an identification strategy. Not all

parameters of the multifactor affine model can be estimated, since there are transformations of the
parameter space preserving the likelihood. The specification in Ang et al (2005) is sub-identified,
and its parameters can be arbitrarily rotated, while other articles such as Dai and Philippon (2003)
propose over-identified specifications. We propose an identification based on Dai and Singleton (2000)
that exactly identifies the model. It is also used in Matsumura and Moreira (2006), which addresses
the Brazilian domestic market. Another article discussing identification of models with observable and
latent factors is Pericoli and Taboga (2006). They propose an exact identification, but it is required
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that the mean reverting matrix of the process driving the state factors, Φ, have real and distinct
eigenvalues.
We choose to use continuous-time modelling with high frequency Brazilian and US data because

of the limitations of the available size of historical series. When using Brazilian data, one must take
into account that frequent changes of regime have occurred until recently, such as change from hyper-
inflation to a stable economy (Real Plan, July 1994), change from fixed to floating exchange rate in a
currency crisis in January 1999, and change of monetary policy to inflation target in July 1999. Thus,
our sample starts in 1999, and goes up to 2005.
Our main model contain 5 state variables, one latent for the FED, one for an external macro

factor, one for an internal macro factor, and two latent for the Brazilian sovereign yield curve. Macro
variables tested are: 1) FED short rate, FED long rate, FED slope, VIX index of implied volatility
of options on the Standard & Poor index, exchange rate, Brazilian stock exchange Bovespa index,
Brazilian future exchange interest rate swaps (short-term, long term, slope of the term).
Therefore, our objectives include: 1) analyzing the determinants of the term structure of the Brazil-

ian sovereign interest rates; 2) measuring the forecasting performance of the models; 3) calculating
default probabilities and measure the impact of macro shocks on them; 4) proposing an identification
for affine models with macro factors.
We report that: 1) VIX and FED strongly affects the default probabilities in the short term and

in the long term, respectively. 2) VIX has strong effect on Brazilian sovereign yields, more than
any investigated domestic macro indicator. 3) Since the FED short rate affects more the default
probabilities than the Brazilian domestic short rate, US monetary policy may cause more impact on
the term structure of default probabilities than Brazilian monetary policy.

2 Model
Fix the probability space (Ω,F, P ) and assume no arbitrage. The price at time t of a zero coupon
bond paying 1 at the maturity date t + τ is P (t, τ) = EQ

h
exp

³
− R t+τ

t
rtdt

´
| Ft

i
. The conditional

expectation is taken under the equivalent martingale measure Q, t+ τ is the maturity date, rt is the
stochastic instantaneous rate and Ft is the filtration at time t.
The state of the economy is given by Xt ∈ Rd and follows a Gaussian process with mean reversion.

Let rt = δ0 + δ1 ·Xt, and under the objective P-measure, dXt = K(ξ −Xt)dt+Σdwt. The d× d and
d × 1 parameters K and θ represent the mean reversion coefficient and the long term instantaneous
rate, and ΣΣ| is the instantaneous variance-covariance matrix of the standard Brownian motion wt.
We let the time-varying risk premium be λt = λ0 + λ1 · Xt. Under the martingale measure Q,

using Girsanov, we have dXt = KB(ξB−Xt)dt+Σdw
B
t , dw

B
t = dwt+λtdt, where KB = K+Σλ1, ξ

B =

KB−1(Kξ − Σλ0).Using multifactor Feynman-Kac, we have: let EQ
h
exp

³
− R t+τ

t
r(Xu)du

´
| Ft

i
=

v(Xt, t, τ), then v(x, t, τ) must satisfy the following PDE:

Dv(x, t, τ)− r(x)v(x, t, τ) = 0, v(x, t, 0) = 1, (1)

where the operator D is given by Dv(x, t, τ) := vt(x, t, τ )+vx(x, t, τ)·KB(ξB−x)+ 1
2 tr[ΣΣ

|vxx(x, t, v)].

The solution is exponential affine on the state variables, v(t, τ , x) = eα(τ)+β(τ)·x, where β0(τ) =
−δ1−KB|β(τ) and α0(τ) = −δ0+ ξB|KB|β(τ)+ 1

2β(τ)
|ΣΣ|β(τ). An explicit solution of this system

of ODE’s exists only in some special cases, such as diagonalK, but Runge-Kutta numerical integration
provides accurate approximations.
Hence, the yield is given by an affine function of the state variables, Y (t, τ) = A(τ) + B(τ) ·Xt,

where A(τ) = −α(τ)
τ and B(τ) = −β(τ)

τ . If we stack the equations for the K yield maturities, then
Yt = A+BXt, where Yt = (Y (t, τ1), ..., Y (t, τK))| . The factor loadings A and B will depend on the
set of parameters Ψ = (δ0, δ1,K, θ, λ0, λ1,Σ).
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The likelihood is the density function of the sequence of observed yields (Yt1 , ..., Ytn), which is
found integrating the transition density of Xti |Xti−1 :

Xti|ti−1 = (1− e−K(ti−ti−1))Xti−1 + e−K(ti−ti−1)θ +
Z ti

ti−1
e−K(ti−u)Σdwu. (2)

Using Ito’s isometry formula, it follows that the stochastic integral term above is Gaussian with mean
zero and variance

E

"Z ti

ti−1
e−K(ti−u)Σdwu

#2
=

Z ti

ti−1
e−K(ti−u)ΣΣ|(e−K(ti−u))|du. (3)

This means that Xti|ti−1 ∼ N(µi, σ
2
i ) , where µi = (1− e−K(ti−ti−1))Xti−1 + e−K(ti−ti−1)θ and σ2i =R ti

ti−1
e−K(ti−u)ΣΣ|(e−K(ti−u))|du.
Since dt = ti−ti−1is small, since daily frequency is used, a very good approximation to the integral

(3) is σ2i ' e−KdtΣΣ|(e−Kdt)|dt. Thus, Xti|ti−1 = µi + σi N(0, I), with σi = e−KdtΣ
√
dt.

Now suppose the vectorsXt and Yt have the same dimension, that is, the number of yield maturities
equals the number of state variables. Then, we can invert a linear equation and find Xt as a function
h of Yt: Xt = B−1(Yt−A) = h(Yt). Using change of variables, it follows that log fY (Yt1 , ..., Ytn ;Ψ) =
log fX(Xt1 , ...,Xtn);Ψ) + log |det∇h|n.
The procedure above restricts the number of yield maturities that can be used, because of the

inversion used to obtain the model implied state vector. If we want to use more data available, that
becomes a problem, since the additional yields make the model singular. One solution is to follow
Chen and Scott (1993), and add measurement errors to some yields. Let d and K be the number of
state variables and of maturities. We select d maturities out of K to be priced without error. Let Y 1

t

represent the set of those yields at a given time. The other yields are denoted by Y 2
t , and they will

have independent normal measurement errors u(t, τ) ∼ N(0, σ2u(τ)).

2.1 Adding Default and Macro Factors

An important component in the term structure of emerging countries is the spread due to the possibility
of default. We use Duffie and Singleton’s version of the reduced model. The price PD of a defaultable
bond is

PD(t, τ) = EQ

"
1[T>t+τ ] exp

µ
−
Z t+τ

t

rtdt

¶
+WT 1[T≤t+τ ] exp

Ã
−
Z T

t

rtdt

!
|Ft
#
. (4)

The first part is what the bond owner receives if the maturity time comes before the default time T ,
a stopping time. In case of default, the investor receives the random variable WT at the default time.
If T is doubly stochastic with intensity λ, if the recovery upon default is given by WT = (1− lT )PT ,
where l(t) is the loss rate, and if other technical conditions are satisfied, Lando (1998) and Duffie and
Singleton (1999) prove that

PD(t, τ) = EQ
·
exp(−

Z t+τ

t

(rt + st)dt)|Ft
¸
, (5)

where st = ltλt is the spread due to the possibility of default.
We briefly explain the concept of doubly stochastic stopping time (see Schönbucher, 2003, Duffie,

2001). Define N(t) = 1[T≤t] the associated counting process. It can be shown that N(t) is a sub-
martingale. Applying the Doob-Meyer theorem, we know there exists a predictable, nondecreasing

5



process A(t) called the compensator of N(t). One property of the compensator is to give infor-
mation about the probabilities of the jump time. The expected marginal increments of the com-
pensator dA(t) is equal to the probability of the default occurring in the next increment of time:
E [A(t+∆t)−A(t)|Ft] = P [N(t+∆t)−N(t) = 1|Ft]. An intensity process λt for N(t) exists if it
is progressively measurable and non negative, and if A(t) =

R t
0
λ(s)ds.It turns out, under regularity

conditions, that

λ(t) = lim
∆t→0

1

∆t
P [T ≤ t+∆t|T > t]. (6)

So, λ(t) represents the evolution of the instantaneous probability of defaulting by T + t if default has
not occurred up to T .
The instantaneous spread is affine, st = δs0 + δs1 · Xt , and the state vector Xt incorporates

state variables relative to the defaultable yields, following a Gaussian process. The discount rate
is Rt = rt + st = δr0 + δs0 + (δ

r
1 + δs1) · Xt = R(Xt). Set λst = λs0 + λs1 · Xt. The price of the

defaultable bond is exponential affine, PD(t, τ) = exp(αD(τ) + βD(τ) ·Xt), where αd and βd solve
βD(τ)
dτ = −(δr1+δs1)−KBTβD(τ) and αD(τ)

dτ = −(δr0+δs0)−KBT θBTβD(τ)+ 1
2β

D(τ)TΣΣTβD(τ). Thus,

we have Y D(t, τ) = AD(τ) + BD(τ) ·X(t), where AD(τ) = −αD(τ)
τ , BD(τ) = −βD(τ)

τ , or, piling the
equations, Y D

t = AD +BD ·Xt.
The likelihood function turns out to be equal to the previous case, except by the increased dimen-

sion. Duffie at al (2003) opted to make a 2 step maximization in which the reference curve parameters
are estimated first, following the estimation of the yield spread curve parameters conditional on the
estimated parameters. They assumed a “triangular” form for the dynamics of the state variables.
The American short rate is affected the Russian short rate, but not vice-versa. We use the same
idea, observing that a one step procedure could be used (as is explained later), but would increase
the computational complexity. The state vector contains the reference and the emerging market state
vectors.
The final model is completed adding the macro state factors. Let Xt = (Mt, θt), where Mt are

macro variables and θt the latent variables.The short rate combines the Taylor Rule and the affine
model: rt = δ0+ δ11 ·Mt+ δ12 ·θt, which permits studying the inter-relations between macroeconomic
questions, such as monetary policy, and finance problems, such as derivative pricing, while affine
tractability is retained. In fact, similar calculations result in Y (t, τ) = A(τ)+BM (τ) ·Mt+Bθ(τ) · θt.
The likelihood is calculated as follows. Adding maturities Y 2

t with measurement errors ut, we
have:  Mt

Y 1
t

Y 2
t

 =
 0

A1

A2

+
 1 0 0

BM 1 Bθ 1 0
BM 2 Bθ 2 1

 Mt

θt
ut

 . (7)

Denote by h the function that maps the state vector (Xt, ut) to (Xo
t , Yt, Y

2
t ). One obtains θt

inverting on Y 1
t : θt = (B

θ 1)−1(Y 1
t −A1 −BM 1 ·Mt). Then

log fY (Yt1 , ..., Ytn ;Ψ) = log fX(Xt1 , ...,Xtn);Ψ) + log fu(ut1,...,utn) + log |det∇h|n (8)

= −(n− 1) log |detBu 1|+
nX
t=2

log fXt|Xt−1(Xt;Ψ) + log fu(ut). (9)

In a model in which the macro factors are not affected by the yield curve like Ang and Piazzesi
(2003), the parameters are also distributed in a triangular form, so that the macro factors can be
estimated separately in a first step. Our estimations, like Ang et al (2005), allow macro factors and
the yield factors to fully interact. However, we also use a two step estimation in models containing the
reference and the emerging curve. We assume that the US yield curve is not affected by the Brazilian
yield curve and estimate it in a first step.
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Observe that a credit risk reduced model can substitute the term structure model with macro
factors if we look to the US yield curve as macro factors influencing the emerging curve. However,
the interpretation of the spread as the instantaneous expected loss given by the Duffie and Singleton
(1999) model will be lost, together with the calculation of model implied default probabilities.
Finally, we remark that it is possible to make one-step estimations of the US and the Brazilian yield

curve and the macro factors. Since we suppose that the US yield curve parameters are not affected
by the Brazilian parameters, the joint probability density of the yield curves and macro factors can
be decomposed:

f(Y US , Y BR,MUS ,MBR;ΨUS ,ΨBR) = f(Y US ,MUS ;ΨUS)f(Y BR,MBR;ΨBR|Y US ,MUS ;ΨUS).
(10)

Thus, the log likelihood will be the sum of two functions, one depending on ΨUS and the other on
(ΨUS ,ΨBR). However, the maximization becomes much more difficult and we avoided it.

3 Identification
The complete set of parameters are distributed as follows. The number of state variables is d, of yield
maturities is m, and of latent variables is n.

ξ| , ξ∗| ∈ Rd; σ|u ∈ Rm−n;Σ =
µ
ΣMM ΣMθ

ΣθM Σθθ

¶
∈ Rd×d, (11)

K =

µ
KMM KMθ

KθM Kθθ

¶
;K∗ =

µ
K∗MM K∗Mθ

K∗θM K∗θθ

¶
∈ Rd×d.

The model need to be identified. We extend the canonical identification of Dai and Singleton
(2000) for the case with observable factors. It is shown below that if we set ξθ = 0, Σθθ = I (the
identity matrix), ΣMθ = 0, and impose that Kθθ, Σθθ and ΣMM are lower triangular, then the model
is exactly identified. We subtract the sample mean from the macro factors, so that ξM = 0 and hence
ξ = 0.
It can be shown that Ang et al (2005) is not fully identified, while Dai and Philippon (2004),

Hördahl et al (2004) and Amato and Luisi (2005) use over-identifying restrictions that are not moti-
vated by economic reasons. Pericoli and Taboga (2006) also points out the way to achieve an exact
identification, but they require that the mean reverting matrix of the state vector process K have real
and distinct eigenvalues.
Invariant transformations on the parameter space can arbitrarily change the impulse response

functions of the latent factors if the specification is sub-identified. On the other hand, over-identified
models produce sub-optimal results and may artificially distort the impulse response functions.
However, when we are interested in models properties with respect to observable factors, the choice

of the specification does not matter.

Proposition 1 DS invariant transformations preserve the pricing equation and the impulse response
function of the yield function.

Proof. See Appendix.

Proposition 2 DS invariant transformations preserve the likelihood of the affine model with observ-
able factors under Chen-Scott.

Proof. See Appendix.
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We assume that the state factors have a given intertemporal causality ordering in Σ as in the
VAR literature. The FED rate is always the more exogenous factor, followed by the VIX, the domestic
macro factors and the latent factors.
We did impose a slight super identifying restriction because our K∗θθ is also lower triangular.

Summing up, we have:

Σ =

µ
ΣMM 0
0 I

¶
, ξ = 0, and Kθθ,K

∗
θθ,ΣMM lower triangular. (12)

An especial case is obtained whenKMθ = K∗Mθ = 0, which is called macro-to-yield, since the macro
factors affect but are not affected by the financial latent factors. Another case is the yield-to-macro,
in which KθM = K∗θM = 0. Here, yield curve affect macro factors but not vice-versa in the transition
equation dXt = K(ξ −Xt)dt+Σdwt. However, macro factors still affect the yield curve through the
short rate equation, rt = δ0+ δ1 ·Xt. The two restricted specifications are called unilateral, while the
unrestricted is called bilateral.
We estimated 2 families of increasing difficulty specifications. The first is preliminary, consisting

of macro-to-yield models with one macro factor and two latent factors for the Brazilian yield curve;
and second is the main one, consisting of bilateral models with two macro factors, one FED and two
Brazilian latent factors.

3.1 IRF, Variance Decomposition and Default Probabilities.

The continuous-time version of the impulse response functions and variance decomposition are de-
tailed in the appendix. The term structure of default probabilities, which is given by Pr(t, τ) =

EP
h
exp

³
− R t+τ

t
stdt

´
|Ft
i
, can be calculated as in the pricing case. It turns out that Pr(t, τ) =

exp(αPr(τ) + βPr(τ) · Xt), with αPr and βPr given by βPr(τ)
dτ = −δs1 − KTβPr(τ) and αPr(τ)

dτ =

−δs0 −KT θTβPr(τ) + 1
2β

Pr(τ)TΣΣTβPr(τ). Note that the expectation is taken under the objective
measure. The log of the probabilities is again an affine function of the state variables, log Pr(t, τ) =
αPr(τ) + βPr(τ) ·X(t).

4 Estimation
The parameters are chosen maximizing the log-likelihood given the series of yields and observable
factors. Maximum likelihood produces asymptotically consistent, non-biased and normally distributed
estimators. Let L = log fY . When T → ∞, we have ψ̂ → ψ a.s., and T

1
2 (ψ̂ − ψ) → N(0,Ω) in

distribution, where Ω−1 = E
³
∂L(Y ;ψ)

∂ψ
∂L(Y ;ψ)T

∂ψ

´
= −E

³
∂2L(Y ;ψ)

∂ψ2

´
using the information inequality.

An estimator for Ω−1 is the empirical Hessian Ω̂−1 := − 1
n

Pn
t=1

³
∂2Lt(Y ;ψ̂)

∂ψ2

´
, where Lt represents the

likelihood of the vector with t elements (see Davidson and Mackinnon, 1993). Confidence intervals for
the parameter estimations are found using the empirical Hessian and the Central Limit Theorem. If
the number of observations n is large enough, then the variance of ψ̂−ψ will be given by the diagonal
of N(0,Ω/n). Alternatively, one could obtain the confidence interval via simulation.
Our estimation strategy consisted in may trial optimizations using Matlab. We begun with the

simpler macro-to-yield models with less parameters, choosing different starting vectors in the numerical
optimization. Then, the result was used in models with higher dimensions. New trials from random
vectors were conducted and compared., and the maximal results were chosen. Although this procedure
may be path-dependent, the "curse of dimensionality" does not allow the use of a complete grid of
random starting points as would be desirable.
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4.1 Data

We use the constant maturity zero-coupon term structure from BM&F (the Brazilian Futures Ex-
change) interest rate swaps, the FED constant maturity zero-coupon yield curve, the constant ma-
turity zero-coupon term structure of spreads from Bloomberg, the Chicago Board Options Exchange
Volatility Index - VIX -, created from S&P 500 index options implied volatilities, the BR Real/US
Dollar exchange rate and Bovespa index of the Brazilian Stock Exchange most traded firms, and
finally the Brazilian Government Debt over GDP.
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Figure 1:

The sample used for the estimation begins on February 17th 1999, and ends on September 15th

2004, comprising 1320 days. More 200 days of available data, finishing on July 21st 2005, were
separated to test the forecasting performance. The maturities of the FED and sovereign Brazilian
yield curve are the same: {3m, 6m, 1y, 2y, 3y, 5y, 10y, 20y}. We choose 3m and the 5y as the yield
maturities priced without without measurement errors in the Chen-Scott inversion. We took the log
of the exchange rate and of the Bovespa index, since our model is linear on the state variables. The
Debt series have yearly frequency, and was used only in the model with variable premium parameters.
The sample starts one month after the change of regime of the exchange rate from fixed to floating

in January of 1999, forced by a devaluation crisis.

5 Results

5.1 Macro-to-yield without default

We begin presenting and comparing the simplest specification, whose main utility is to select macro
factors to use in other models. The trial models have 3 state variables, X = (M, θ1, θ2), one macro
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and two latent, characterized by the macro-to-yield dynamics. The following macro variables are used:
1) VIX, 2) BR Real/US Dollar exchange rate, 3) Bovespa, 4) BM&F 1-month yield, 5) BM&F 3-years
yield and 6) BM&F slope = 3y - 1m yields, 7) FED 1-month yield, 8) FED 10-years yield and 9) FED
slope = 10y - 1m yields. The Table 1 contain the following information: A) the log-likelihood divided
by the number of observations, B) a measure of adherence given by the model in-sample mean squared
error divided by the random walk mean squared error, C) the out-of-sample forecasting performance,
or Theil-U, D) the correlation between the latent factors and the sovereign level and slope, and E)
the mean of the measurement errors in basis points.
The adjustment and Theil-U are given by the standard deviation of a 1-month forecasting error

of selected maturities, normalized by the standard deviation of a model that follows a random walk.

That is, the in-sample adherence and the Theil-U are given by
µP

t(Yt−bYt|t−21)2P
t(Yt−Yt−21)2

¶ 1
2

, where sums are

in or out-of-sample, respectivelly.
The results of the Macro 1D unilateral models are shown in the table. The in-sample adherence

of the specifications are similar, having RMSEs roughly the same size as the RW. The mean of all
the measurement errors excluding the exactly priced 3m and 5y, is around 80 basis points. In term
of likelihood, the specifications using the Fed Fund have higher results. However, no model could
actually have any forecasting capacity. The latent factor θ2 is highly correlated to the level in all
cases, while θ1 is not highly correlated to the slope for some maturities.

Table 1. Summary of Macro 1D unilateral + BR 2D models. All have 26 parameters.
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VIX EX bove bmf1m bmf3y bmfsl fed1m fed10y fedsl

LL/T 44.66 44.25 44.25 44.75 44.79 44.95 47.52 47.46 47.07
M(In) 1.14 1.04 1.10 1.03 1.03 1.09 1.04 1.03 1.06
TU3m 2.02 0.76 2.58 2.51 2.50 6.00 2.16 2.15 2.21
TU1y 1.54 1.27 2.77 2.48 2.41 4.05 2.32 2.71 2.26
TU5y 1.37 0.96 2.03 1.33 1.31 3.98 1.27 1.75 1.05
TU10y 2.85 3.73 1.39 2.86 2.88 5.24 2.13 2.37 2.65
c(θ1,s) -0.20 -0.37 -0.29 -0.59 -0.56 -0.57 -0.66 -0.69 -0.61
c(θ2,l) 0.99 0.83 0.98 0.94 0.94 1.00 0.94 0.84 0.94
M(σu) 72 88 74 82 83 77 82 81 83

Next table measures the proportion the macro factors explain in the variance decompositions for
forecast horizons of {1m, 9m}-ahead of the {3m, 3y, 20y}-yields.

Table 2. Variance decomposition of yields. Macro 1D unilateral + BR2D models. Contribution of
the macro factor for 1 and 9-month horizons.

Resp VIX EX Bove bmf1m bmf3y bmfsl fed1m fed10y fedsl

1 9 1 9 1 9 1 9 1 9 1 9 1 9 1 9 1 9
3m 15 31 07 07 01 22 00 00 00 00 16 46 00 00 00 02 00 06
3y 23 46 09 11 00 13 00 00 00 00 23 61 00 00 04 10 00 07
20y 54 69 09 14 06 21 00 00 00 00 50 79 00 00 08 16 00 07

Table 2 compares the importance of the different macro variables for the sovereign yield curve. It
is the criterion we use to select the variables to be used in the next models, because we are interested
in the macro factors most influencing the yield curve. The ordering of the impact is the following: 1)
Greater effect: VIX and BM&F slope; 2) Some effect: exchange rate, 10 years FED yield, FED slope,
Bovespa index; 3) Negligible effect: BM&F 1 month and 3 years yield, FED 1-month yield.

5.2 Bilateral models

This subsection present the specifications with one FED latent factor, an internal and an external
macro factor, and two Brazilian latent factors. The domestic macro factor has a bilateral interaction
with the sovereign Brazilian factors, that is, the macro factors and the sovereign yield curves fully
interact.

Table 3. Summary of FED 1D + Macro 2D bilateral + BR 2D. All have 51 parameters.
vix bmf 3m vix bmf sl vix bmf 3y vix lbov vix lbov/ex

LL/T 52.90 52.52 52.91 55.81 55.57
M(In) 1.00 0.99 1.02 1.04 1.05
TU3m 2.77 2.80 3.20 3.82 3.42
TU1y 2.29 2.35 2.56 4.45 4.04
TU5y 1.02 1.04 1.03 3.20 2.65
TU10y 2.29 2.40 2.12 1.77 1.45
c(θ1,s) -0.08 -0.48 -0.04 -0.86 -0.86
c(θ2,l) 0.92 0.93 0.93 0.96 0.96
M(σu) 61 62 61 67 68

Table 3 is a summary of the main models. The higher likelihood indicates that the second macro
factor and the bilateral dynamics add information, but the out-of-sample forecasting performance
continues to be low, in spite of a better in-sample fitting. Also, the mean Chen-Scott measurement
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errors decreased to sixty basis points. The unobservable factor θ2 can still be interpreted as the level,
but θ1 is in some cases completely uncorrelated to the slope.

Table 4. Variance Decomposition. Fed 1D + Macro 2D + BR2D models.
Imp Resp vix bmf3m vix bmfsl vix bmf3y vix lbov vix lbov/ex

h=1 h=9 h=1 h=9 h=1 h=9 h=1 h=9 h=1 h=9
FED B3m 01 02 00 02 01 03 01 02 01 03

B3y 00 01 00 01 00 01 00 04 00 05
B20y 00 00 00 00 00 00 00 04 00 04

VIX B3m 04 26 02 20 04 32 02 21 02 21
B3y 05 33 02 23 05 39 04 20 04 21
B20y 20 48 27 38 20 53 34 15 36 16

bmf/bov B3m 00 02 02 07 01 01 00 00 00 00
B3y 00 02 03 10 00 01 00 03 00 01
B20y 00 01 03 09 01 02 00 02 00 00

θ1 B3m 19 12 38 22 17 09 68 51 68 50
B3y 03 04 13 09 02 01 20 50 19 52
B20y 00 01 02 04 00 01 05 69 05 70

θ2 B3m 19 57 38 48 17 56 68 25 68 25
B3y 91 61 81 57 93 58 76 23 76 21
B20y 80 50 67 49 79 43 61 10 59 09

Table 4 show the variance decomposition of {1m,3y,20y}-yields for forecast horizons of {1,9}-
months ahead of our main models. In line with the preliminary models, the VIX is again the most
important macro factor influencing the yields. Of the domestic yields, only the 3y-1m slope has some
effect.
Next, Table 5 present the variance decomposition of the default probabilities. In the 9-month

horizon decomposition (free from the initial condition effects) the results show that: 1) In all spec-
ifications, the FED has amost null effect on short bonds, but 73-93% of changes in implied default
probabilities of bonds with long maturities are attributable to changes in the FED short rates. 2) The
effect of the VIX is smaller on long bonds, but about 50% of changes in implied default probabilities
of shorter bonds are attributable to changes in the VIX index. 3) Of the domestic factors, only the
slope of the term structure has a relatively important effect, accounting for 11% of changes in implied
probabilities of the short bond. 4) Thus, according to the model, the domestic short and long rate
and the stock exchange index level Bovespa in local currency or in dollars are not sources of default
probability movements.
Figure 3 shows the evolution of the 1-yearl survival probability along the sample, and Figure 4

the term structure of default probabilities in the last day of the sample. The figure indicates some
robustness of the estimations.
Impulse response functions are plotted after the default probabilities. Each figure presents the

effect of a shock of one standard deviation of a monthly variation in a state variable. Figure 5
evaluate the impact of a FED shock on itself, on the macro factors and on the {3m, 3y, 20y}-yields.
The next figure shows the response to one deviation of a monthly variation of VIX shocks. All the yield
rates are increased about 1% in absolute terms 3 months after the shock an then decreases. Figure
7 shows the impact of the domestic macro factors. Changes in either the domestic short or long rate
did not result in changes of the sovereign yields. But the domestic slope did cause an increase. It
may indicate a change of expectations due to a future rise in inflation. A rise of the domestic stock
exchange caused a small decrease of the yields.
Figure 8 shows the impact of an increase of one deviation of a monthly variation of the FED

latent factor (approximately the FED short rate) on the default probabilities. It shows that the
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survival probability fall by up to 2% in relative terms. An increase in VIX also decreases the survival
probability, but about 0.6% in relative terms. Of the domestic factors, only the BM&F slope has some
impact, decreasing the long end survival probability by about 0.35% in relative terms.

Table 5. Variance Decomposition of the Default Probabilities. Fed 1D + Macro 2D + BR 2D
models.

Imp Resp vix bmf3m vix bmfsl vix bmf3y vix lbov vix lbov/ex

h=1 h=9 h=1 h=9 h=1 h=9 h=1 h=9 h=1 h=9
FED B3m 00 00 00 00 00 00 02 02 02 02

B3y 08 29 07 21 09 29 10 42 21 59
B20y 51 79 47 73 52 78 66 88 80 93

VIX B3m 29 42 19 32 34 56 15 31 16 31
B3y 36 33 31 31 55 51 29 25 26 18
B20y 20 10 18 11 29 16 11 05 07 03

bmf/bov B3m 01 03 08 11 01 01 00 00 00 00
B3y 03 03 11 10 02 02 01 01 01 01
B20y 01 01 06 03 01 01 00 00 00 00

θ1 B3m 11 09 21 12 06 03 61 49 61 49
B3y 09 07 11 06 01 00 45 24 38 16
B20y 05 02 06 02 00 00 18 05 10 03

θ2 B3m 11 46 21 44 06 39 61 18 61 18
B3y 43 29 41 31 33 17 16 08 14 06
B20y 23 08 24 11 18 05 06 02 03 01

5.3 Default Probabilities

Figure 3 depicts the path of 1 minus the probability of a default occurring before 1 year, that is, the
market implied probability that the bond will survive for another year. It can be seen that different
specifications tend to present similar probabilities. Figure 4 depicts the term structure of default
survival probabilities for the last day of the sample.

6 Conclusion
This article proposed an approach combining term structure models with macro factors and reduced
credit risk models, aiming to measure how unexpected macroeconomic changes affect sovereign default
probabilities. Amato and Luisi (2005) also explore the same ideas with respect to corporate credit
risk, but our article uses a fully interacting dynamics, in which macro factors affect and are affected
by the credit spreads. Also, we presented and estimated an identified model, while other articles use
super or sub-identified models.
We tested the influence of two domestic macro factors and term structure on the sovereign term

structure of interest rates and of credit spreads, and the result was that VIX and FED had greater
impact. We calculated variance decompositions and impulse response functions in order to make
quantitative predictions. The model presented good fitting to data, but did not show good forecasting
performance. Our results have shown that VIX is an important factor for the default probabilities of
emerging market short-term bonds. On the other hand, the FED is an important indicator for the
longer yields.
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A Appendix

A.1 Identification

In order to identify the unobservable factors θ, we modify the method introduced by Dai and Singleton
(2000) to the case with macro factors. There are several possibilities and only one choice is imple-
mented. The identification is necessary because not all parameters can be estimated. There are linear
transformations on the parameter space leaving the short rate, and thus the yields, constant. These
transformations can be considered degrees of freedom that must be spent so that the model becomes
identified. If a model is not identified, as Collin-Dufresne et al (2006) put it, two researchers using the
same data can arrive at different sets of parameter estimates even if they succeed to maximize. Also,
the impulse response functions could be arbitrarily changed and model forecasts would be meaning-
less. Let Ψ = (δ0, δ1,K, ξ, λ0, λ1,Σ), the affine invariant transformation T is defined on the space of
the parameters by a nonsingular matrix L such that TL(Ψ) = (δ0, (L|)−1δ1, LKL−1, Lξ, λ0, λ1, LΣ).
Another invariant transformation is the Brownian motion rotation O, which takes a vector of un-
observed, independent Brownian motions into another vector of independent Brownian motions:
TO(Ψ) = (δ0, δ1,K, ξ,Oλ0, Oλ1,ΣO

|). The rotations do not affect the state factors and can al-
ways be used to make Σ a triangular matrix. We impose a lower triangular Σ, which implies that
macro factors do not react contemporaneously to monetary policy.
We impose E(θ) = 0 as Dai and Singleton (2000), and subtract the mean value of the macro

factors, so that E(M) = 0.Then, ξ = 0. Also, in contrast to the case with purely latent factors, the

transformations L must preserve the macro factors, that is, L =
µ

I 0
A B

¶
. Here matrices A and

B matrix are chosen such that V ar(θ) = I,
P

Mθ = 0, or

LΣ =

µ
ΣMM 0
0 I

¶
(13)

where, as said before, ΣMM is lower triangular. This implies that macro and monetary factors do not
have correlated contemporaneous innovations.
There is another invariant transformation that must be used in case LΣ has the special format

shown above, R =

µ
I 0
0 O

¶
, where O is another rotation which makes Φθθ lower triangular.

Summing up, we have

Σ =

µ
ΣMM 0
0 I

¶
, ξ = 0, Φ =

µ
ΦMM ΦMθ

ΦθM Φθθ

¶
with Φθθ lower triangular. (14)

This completes an exactly identified specification.
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We remark that another possibility is imposing a triangular ΦBθθ instead of Φθθ. Actually, many
other identifications are possible.
Proof of the invariance of the likelihood with Chen-Scott under DS transformations. The likelihood

is

L(Ψ) =
TX
t=2

(− log |detJ |+ log fX(Mt, θt|Mt−1, θt−1)) (15)

= (T − 1) log |det J |− 1
2
(T − 1) log detΣΣ|

−1
2

TX
t=2

(Xt − µ− ΦXt−1)|(ΣΣ|)−1(Xt − µ− ΦXt−1) (16)

where J =
µ

I 0

βM βθ

¶
.

Will will show that L(Ψ) = L(TLΨ), where L is the invariant operator. The third term, when
transformed, is unchanged:

(LXt − Lµ− LΦL−1LXt−1)|(LΣ(ΣL)|)−1(LXt − Lµ− LΦL−1LXt−1) (17)

= (LXt − Lµ− LΦL−1LXt−1)|(L−1)|(ΣΣ−1)L−1(LXt − Lµ− LΦL−1LXt−1) (18)

= (Xt − µ− ΦXt−1)|(ΣΣ|)−1(Xt − µ− ΦXt−1) (19)

The first term, when transformed, results in

−1
2
(T − 1) log detLΣ(LΣ)| = −1

2
(T − 1)[log detΣΣ| + log detL+ log detL| ].

−1
2
(T − 1) log detΣΣ| − (T − 1) log detL.

Now, to calculate the transformed second term −(T−1) log |det J |, note that detJ = detBθ, and that

(BL−1)θ = β−1Bθ because BL−1 =
¡
BM Bθ

¢µ I 0

−β−1α β−1

¶
. So, the result of applying L

will be − log |detβ−1Bθ| = − log |detBθ| − log |detβ−1| = − log |detBθ| + log |detβ|. Now, since
detL = det

µ
I 0
α β

¶
= detβ, the (T−1) log detL expression of the first two terms of the likelihood

will cancel because of the different signs.

A.2 Impulse Response Function and Variance Decomposition

Impulse response functions and variance decompositions are used to analyze the impact of macro
shocks on yields and default probabilities. The time impulse response function in discrete time is
Xt = Σεt + ΦΣεt−1 + Φ2Σεt−2 + Φ3Σεt−3 + ... Since Yt = A+ BXt, the response of the yield curve
to the shocks is

BΣεt BΦΣεt BΦ2Σεt BΦ3Σεt ...
t+ 0 t+ 1 t+ 2 t+ 3 ...

. (20)

In continuous time, we have Xti|ti−k = e−K(ti−ti−k)Xi−k +
Pk−1

l=0

R ti−k+l+1
ti−k+l

e−K(ti−u)Σdwu.Using the
approximation (3), it follows that the response of Xt to a shock εt in a interval of time of dt is

Σ
√
dtεt e−KdtΣ

√
dtεt e−2KdtΣ

√
dtεt e−3KdtΣ

√
dtεt ...

t+ 0 t+ 1 t+ 2 t+ 3 ...
(21)
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The response of the yield Yt is

BΣ
√
dtεt Be−KdtΣ

√
dtεt Be−2KdtΣ

√
dtεt Be−3KdtΣ

√
dtεt ...

t+ 0 t+ 1 t+ 2 t+ 3 ...
, (22)

and the response of the log of the survival probability log Pr(t, τ) is

βPrΣ
√
dtεt βPre−KdtΣ

√
dtεt βPre−2KdtΣ

√
dtεt βPre−3KdtΣ

√
dtεt ...

t+ 0 t+ 1 t+ 2 t+ 3 ...
. (23)

In discrete time, the Mean Squared Error of the s-periods ahead error Xt+s −EXt+s|t is MSE =
ΣΣ|+ΦΣΣ|Φ|+Φ2ΣΣ|(Φ2)|+ ...+ΦsΣΣ|(Φs)| . The contribution of the j-th factor to theMSE of
Xt+s will be then ΣjΣ

|
j+ΦΣjΣ

|
jΦ

|+Φ2ΣjΣ
|
j (Φ

2)|+...+ΦsΣjΣ
|
j (Φ

s)| , while the j-th factor contribu-
tion to theMSE of Yt+s is BΣjΣTj B

|+BΦΣjΣ
|
jΦ

|B|+BΦ2ΣjΣ
|
j (Φ

2)|B|+ ...+BΦsΣjΣ
|
j (Φ

s)|B| .
In continuous time, it turns out that the s-period ahead MSE of is the integral: MSE =R t+s

t
e−K(t+s−u)ΣΣ|(e−K(t+s−u))|dt. Hence, the contribution corresponding to the j-th factor in

the variance decomposition of Xt+s, Yt+s and log Pr(t, τ) at time t areR t+s
t

e−K(t+s−u)ΣjΣ
|
j (e
−K(t+s−u))|dt,

B|
³R t+s

t
e−K(t+s−u)ΣjΣ

|
j (e
−K(t+s−u))|dt

´
B

(βPr)|
³R t+s

t
e−K(t+s−u)ΣjΣ

|
j (e
−K(t+s−u))|dt

´
βPr.

(24)
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Figure 5: Response of yields to FED shocks.
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Figure 6: Response of yields to VIX shocks.
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Figure 7: Response of yields to BM&F or Bovespa shocks.
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Figure 8: IR Survival Probabilities: FED shock.
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Figure 9: IR Survival Probabilities: VIX shock.
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Figure 10: IR Survival Probabilities: BM&F or Bovespa shocks.
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