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Resumo

Este trabalho tem por objetivo a suavização de séries temporais com simulações de Monte Carlo
para a análise de séries que apresentam mais de uma possível quebra estrutural, sejam estas
advindas de movimentos no coeficiente da tendência ou no intercepto. O filtro de Hodrick-Precott
(HP) não proporciona a identificação de tais mudanças na série, de intercepto e/ou de coeficiente,
para computar e portanto limpar a série da tendência para que apenas o componente cíclico seja
analisado. Quando as séries são relativamente estáveis, como é o caso de séries trimestrais de
produtividade e emprego das economias desenvolvidas, esta característica do filtro HP não tem
maiores implicações. Porém, para economias relativamente instáveis este ponto se torna relevante,
pois a incidência de mudanças na tendência se torna maior, e o filtro HP pode levar os empiricistas
a tratarem a suavização das séries de forma simplista. Dentro do exposto, propomos uma
metodologia que considera a possibilidade de quebra em qualquer momento no tempo, seja de
coeficiente ou de intercepto. Como exemplo, utilizamos modelos com variações na tendência, em
coeficiente e em intercepto, dentro de uma metodologia recursiva de suavização de tendência para
series obtidas através de simulações de Monte Carlo. Contudo, comparamos ainda uma aplicação
para o PIB brasileiro.

Palavras-chave: ciclos econômicos, filtro hodrick-prescott, modelos de séries temporais.

Abstract

The objective of this paper is to show an alternative technique to smooth time series from Monte
Carlo Simulations. The technique considers that time series can contain more than one structural
break, coming from movements in coefficients of trend or from intercept. The Hodrick-Prescott
Filter (HP) does not provide identification of such possible breaks in order to smooth trend from the
series to analyze its cyclical component. If the series are relatively stable, this problem may not
have relevant implications. Otherwise, for economies relatively unstable, trend movements may
interfere in the specification of the cyclical component, and Hodrick-Prescott smoothing could lead
empiricists to achieve simplistic forms to economic cycles. In the context, we present an empirical
methodology that allows structural breaks in any point of time, from coefficients or from intercepts.
We apply this recursive technique to different models with variations in trend, from coefficients and
from intercepts, using series simulated by Monte Carlo. Moreover, we compare the results of both
techniques to the Brazilian GDP.

Key words: business cycles, hodrick-prescott filter, time series models.
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I. Introduction 
 The objective of this work is to present a technique to separate the cyclical component of a 
time series. A time series (Y) contains four basic elements, such as: the seasonality (S), the trend 
(T), the cyclical (CL), and the stochastic component (ER). Once one eliminates the seasonality and 
the trend of the variable time series, it remains with the cyclical and stochastic components. Hence, 
the main goal is to separate from the remaining part of the series, the cycle from the stochastic 
component. 
 The underlying hypothesis of the methodology proposed in this work is that the business 
cycle of an economic series may not necessarily contain the stochastic component error. This 
component could account for others sources of disturbances not essentially related to cycles or be 
completely random. One possibility is that this error could represent the first impact of shocks and 
would not demonstrate any cyclical behavior, such as a right away jump that stands for one period 
only. If one accepts that the random error of a series is not necessarily part of its cyclical 
component, one question rising is if the Hodrick-Prescott filter is able to capture the most 
approximated trend estimation as a tool to identify the true cycle of the variable, especially in cases 
of less stable time series. 

Business cycles were a major topic of discussion especially in periods of large fluctuations 
in aggregate variables of industrialized economies. One known example is the Great Depression. 
Many researchers devoted themselves to explain the main cause of fluctuations and to understand 
their consequences to real economic activities. In 1946, an important work by Burns & Mitchell 
brought results about the measurements and classification of business cycles. Since then, the 
techniques to determine business cycles improved substantially. In the 1980s, with the diffusion of 
Hodrick-Prescott Filter (HP Filter) to smooth trends, new efforts took place toward the analysis of 
business cycles of modern market economies. The business cycle has since then been seen as 
deviations of trends of series, considering that these trends can change over time. 
 In accordance with all four components of a series, the introduction of old and new 
methodologies to smooth trends took place. There are some results using moving average 
techniques (Burns & Mitchell, 1946), some working with the hypothesis of changes in the growth 
rate of the variable for different periods of time (Hodrick & Prescott, 1980, 1997), some 
considering the logarithmic differences of the variables, and others constructing structural time 
series models to isolate the cyclical component (Harvey & Jaeger, 1993). Little attention came 
towards the stochastic component of the series, in the sense that it is a residual component with 
erratic behavior, which may bring no especial economic meaning. In fact, to Hodrick & Prescott 
(1980), Nelson & Plosser (1982), and theirs followers, cycles are deviations from trend of a series, 
together with its stochastic component. 
 In this context, the proposition here is to improve with a technique that separates the trend 
and the cycle of a variable, through an estimation of the cyclical component of the series, 
considering that there can be many changes in trends, coming from its slope or intercept. These 
trend characteristics should be accounted for when computing the cyclical component of any series. 
 
II. Growth and Cycles 

In the 1990s, many authors called attention to the fact that growth is related to cycles in time 
series, in the sense that one affects the other. Therefore, one should consider the growth rate of 

                                                 
* Professors at the Department of Economics of the State University of Maringá, Brazil. Researchers of the National 
Council of Research and Development (CNPq), Brazil. 
** Vice-President Economist of Macroeconomic Research at the Research Department of the Federal Reserve Bank of 
Chicago, USA. 



 2

variables to isolate the cyclical component (Cooley & Prescott, 1995). In line with this thought, 
determining the nature of the long term trends (Hamilton, 1989) and detrending techniques became 
important to the analyses of business cycles (Harvey & Jaeger, 1993). 

Hamilton (1989) develops a nonlinear iterative filter based on an algorithm that determines 
shifts in regimes, from a state of positive to negative growth rate. These changes describe business 
cycles fluctuations. The main hypothesis of the study is that a nonstationary series can have discrete 
shifts in its mean growth rate. As pointed out by Hamilton (1989, p. 358), the proposed algorithm is 
the statistical identification of “turning points” of a time series, which distinguishes from other 
rather arbitrarily techniques by specifying the “turning point” as a structural event that is inherent 
in the data-generating process. Thus, the shifts are represented in a model of trend with certain 
probability to switch regime, as in a Markov process.  

In accordance with Hamilton’s results, his Markov model can be used as an alternative 
method to NBER dating of business cycles.  

According to Harvey & Jaeger (1993, p. 231), mechanical detrending based on the Hodrick-
Prescott filter can lead investigators to report spurious cyclical behavior. This is especially true 
when H-P filter is applied to other economic series different from the US economy (1993, p. 236). 
For instance, Harvey & Jaeger found that the HP filter resulted in more volatile cyclical component 
to the real Austrian GDP, probably because erratic movements were important in the Austrian data. 
The same may happen to models based on autoregressive integrated moving average (ARIMA) with 
relatively small sample sizes. When sample is not long enough to allow the researcher to observe 
real facts of the series, one could specify a process being integrated of order 1 when in truth it was 
integrated of order 2. Moreover, the authors’ advice is that a proper presentation of the stylized 
facts associated with a trend plus cycle view needs to be done within the framework of a model that 
fits both components at the same time. (Harvey & Jaeger, 1993, p. 246) 

These developments of business cycles theories and methodologies were accomplished by 
evolutions in the measurements of trend changes, such as: Phillips (1987), Perron (1988), Phillips & 
Perron (1988), Perron & Vogelsang (1992), Vogelsang (1997), among others. The main issue of 
these works was to identify if the trend was stochastic or stationary. Then, they are useful to help 
the studies of detecting possible breaks in time series with changes in its intercept or slope. 
Sometimes a stationary time series has a unique break in the intercept of its trend, changing its level 
once and for all, in the analyzed period. This is important to business cycles because it could be 
happening through an exogenous shock that generates short run fluctuations, as well as long term 
movements, in economic activity.  

In line with the authors cited here, sources of motivation, this research uses the central idea 
of the methods of detecting trend breaks to account for possible changes in trend when smoothing 
the variable. Thus, we can smooth the trend of the variable to remain with a better estimate of the 
cyclical and irregular components of the series. Nonetheless, achieving a good approximation of the 
real measurement of the cycle implies removing the irregular component of the series, throughout 
its estimation. 
 
III. Methodology of Measuring Business Cycles 
 The objective of this section is to explain a new technique of accounting the cyclical 
component of the variable. The motivation of it came from analysis of HP filter of smoothing trend 
and from the methodologies of determining trends and detecting their possible breaks. 

Considering the four elements of a time series, once adjusted for seasonal fluctuations, the 
series remains with the trend (T), the cycle (CL), and its irregular (ER) component. The trend of the 
variable can be deterministic or stochastic. If the trend has a deterministic behavior, it would be 
relatively easy to estimate it and to smooth the series from its possible effects to get an 
approximation of the real cyclical component. However, if the trend is stochastic, it is a relatively 
harder matter to determine its form. In this work, we are considering that a stochastic trend could 
have more than one shape, such as: additive, multiplicative, with constant, without constant, to cite 
a few. Thus, after identifying the trend of the series, the cyclical component and its irregular 
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variability would remain yet. For the series that do not vary much, probably the stochastic term 
would not affect the cyclical component strongly. Although we would still have to account for it in 
order to find an appropriate estimation of the cyclical component. Achieving this appropriate 
estimation of the cycle imply the application of a technique to smooth the true trend and to estimate 
at least the path of the irregular component. Our method for doing so will be displayed thereafter, 
following a Monte Carlo procedure. 
 
3.1. Monte Carlo Experiments 
 The simulations we are about to present here follow Maddala & Kim (1998)’s explorations 
on deterministic trend and stochastic trend. Their work emphasizes detrending. Thus, the cyclical 
component they specify is equal to –0.3ERt. Moreover, it is supposed to be a mean-zero stationary 
process. The authors chose to apply a model with no autocorrelations in the error term, ARIMA 
(0,1,1).1 

In what follow, we explore the experiments used to explain the technique to isolate the 
cyclical component of a series, considering the possible occurrence of stochastic trends and the 
erratic term of the variable.2 
 
3.1.1. Model I 

Initially we created four models of time series with different features for each of their 
components. In the first model, Model I, we made a time series (Y1) with one hundred observations 
(n=100), in which its components have the following characteristics: 

 
Y1t = DT1t+ ST1t+ CL1t+ ERt, 
DT1t = 1+0.5*TREND, 
ST1t = TREND*ERt,         (1) 
CL1t = -0.5*ERt, 
ER ~ N (0, 0.52). 

 
Where DT is the deterministic part of the trend, ST represents the stochastic behavior of the trend, 
CL represents the cycle, and ER is the irregular component, it is expected to have a normal 
distribution with zero mean and 0.25 value for its variance. As usual, the trend is a variable that 
assumes the value of 1 for the first observation, 2 for the second, and so on to get equal to 100 to 
the last observation. The subscript t is to indicate the time. The series generated by this Monte Carlo 
procedure did not contain the seasonal component. 
 Moreover, estimating possible changes in the trend of Y1 implies a regression analysis in 
which the regressors can capture such behavior. Our regression model includes dummy variables 
for this purpose. Therefore, we constructed a hundred dummy variables to account for possible 
changes in the intercept of the Y1. We named it as DC1, DC2, …, DC100. DC1 is represented by a 
vector of 1 by 100 that has the following form: [1, 1, 1, …, 1] . DC2 is a vector of 1 by 100 with the 
form of [0, 1, 1, …, 1]. DC3 has the form of [0, 0, 1, …, 1]. DC99 is the following: [0, 0, 0, …, 1, 
1]. And finally, the dummy variable DC100 is [0, 0, 0, …, 1]. Using the same logic, we also built a 
hundred dummies to represent possible changes in the slope of the trend of the time series, Y1. 
These dummies received the names of D1, D2, D3, …, D100. The first dummy variable D1 has the 
following form: [1, 2, 3, 4, 5, …, 100]. D2 is [0, 1, 2, 3, 4, …, 99]. D3 follows the vector [0, 0, 1, 2, 
3, …, 98]. After all dummies, we have D100 as [0, 0, 0, 0, 0, …, 1]. In addition, we considered a 
variable lagged on time by the order of one, such as: Y1t-i, where i=1.  It is worth to mention that we 
run a lag test to determine the size of i. 
 Hence, the regressions we estimated to account for possible changes in the trend in order to 
smooth our Y1 series, in a recursive manner, according to the following rationality:  
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 Y1t = β0DC1t + β1D1t + β2Y1t –1 + ERt 
 Y1t = β0DC1t + β1D1t + β2Y1t –1 + β3D2t + β4DC2t + ERt 

Y1t = β0DC1t + β1D1t + β2Y1t –1 + β3D3t + β4DC3t + ERt 
Y1t = β0DC1t + β1D1t + β2Y1t –1 + β3D4t + β4DC4t + ERt    (2) 
Y1t = β0DC1t + β1D1t + β2Y1t –1 + β3D5t + β4DC5t + ERt 

  ·                                                       · 
  ·                                                       · 
  ·                                                       · 

Y1t = β0DC1t + β1D1t + β2Y1t –1 +β3D99t  + β4DC99t  + ERt 
Y1t = β0DC1t + β1D1t + β2Y1t –1 +β3D100t+ β4DC100t + ERt 

 
 In accordance with the set of regressions above, we estimated at least one regression for 
each observation of our variable Y1, using the Ordinary Least Square technique, in a recursive 
manner. Notice that the first regression is the simple model with a constant and a linear 
deterministic trend. Maddala & Kim (1998, p. 70) stressed this model to analyze its asymptotic 
distribution. 

In order to hold consistent estimates of the β parameters, we considered only the statistical 
significant results at the level of 90 percent of confidence. For the cases that β3 and β4 were not 
significant, we considered the estimates of the first equation and thus, we reported them for that 
case (observation). With the results of these calculations, we were able to construct a residual series 
for each regression, considering that there could be changes in trends coming from movements in 
the constant term or in its slope in each point of time during the period in analysis.   

The results were then gathered into a (99x99)3 table with a series of residuals of each 
significant regression, one at each column, considering possible changes in trends coming from 
intercept or slope movements. Thus, each observation had an estimated residual that goes through 
each of the regressions. For example, this implies that the observation 20, t=20 at the horizontal line 
of the table, had 99 estimates of the regressions residuals. Once the table of residual series was 
ready, we chose to delete the first four and last four observations of residuals because we 
understood that they could have statistical problems in their estimates. This is possible because the 
dummy variables turned out to be mostly one for the initial four and zeros for the last four 
observations. Since the dummies for the observations under numbers 2, 3, and 4 reached a near 
singular matrix, we decide to repeat the results for the regression of the first observation in these 
series. 

In addition, we computed the mean of residuals for each observation, to get a vector of the 
mean of residuals, calculated by each regression, containing the cyclical and the irregular 
components of the variable, with 92 observations. Moreover, we also computed the standard 
deviation of the residuals of the regressions for each individual observation, coming up with a path 
for the residuals, containing the cycle and the error of the variable Y1. 

This procedure allows us to construct a path along with the cyclical component of the series 
could vary into, considering the standard deviations computed through the residuals of the 
regressions applied for Y1. 

The main objective of this experiment is identifying the cyclical component of the series, 
despite the behavior of its trend and irregular components. Getting the closest approximation of the 
true cycle of the series implies other steps that we will show later on. Since ER is erratic or 
stochastic, we expect to be able to find only a reasonable estimation of its part through the residuals 
obtained in the regressions of Y1.  

The Monte Carlo process implies we have in advance the composition of the cyclical 
component of this series. Thus, the idea is to obtain an estimate as close as possible of the true 
cyclical component. 
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Initially we thought to use the mean of the residuals computed to each observation (MRES) 
minus its standard deviations (STDRES). However, these are second order deviations and so they 
are all positive. Therefore, this simple procedure may not be able to capture the most approximated 
estimation of the cyclical component of the series. It would probably have a bias in the results. 
Nonetheless, we tried this procedure and the result was the opposite of the true cycle, indicating that 
a better estimation would be to sum the standard deviation of the residuals (STDRES) to their mean 
(MRES), and then to multiply the result to (-1). Fortunately, our estimated cyclical component 
showed to be close to its true value, generated by the Monte Carlo process. The equation to 
represent the technique to determine the cycle is as follows. 

 
CL1t = (MRES1t + STDRES1t) * (-1)       (3) 
 
Figure 1 displays this result. As one may notice, the estimated cycle mimics the cycle of this 

Monte Carlo model for most part of the sample. There are throughout Figure 1 some deviations of 
the true cycle for the years of 78 to 81.  

The main question remained was if the procedure proposed here would hold to other models 
whose time series have different trend functions. This investigation will take place through the 
simulation of three extra variables Y2, Y3, and Y4, our models II to IV. All models where also 
estimated using the popular technique of Hodrick-Prescott filter in order to give us a parameter to 
compare with. For that a specific section will show the evaluation of the main results between the 
two techniques. 
 
3.1.2. Model II 

The second model, Model II, we generated with a different pattern to the stochastic trend of 
the variable. The main objective was to test the procedure to find the true cyclical component of the 
variable. 

The time series (Y2) has n equal to 100 observations, and its components are the 
deterministic trend (DT), the stochastic trend (ST), the cycle (CL), and the irregular component 
(ER). These components have the following characteristics: 

 
Y2t = DT2t+ ST2t+ CL2t+ ERt, 
DT2t = 1+0.5*TREND, 
ST2t = [1+(0.5*TREND*ERt)] / [1+(0.5*TREND)],     (4) 
CL2t = +0.25*ERt, 
ER ~ N (0, 0.52). 

 
ER has normal distribution with mean zero and variance 0.25.  

Notice that the stochastic trend is more complex than that of the first model. The purpose 
here is finding out if the cyclical component of a relatively more erratic variable could be specified 
by the new technique that we are proposing.  
 In addition, applying the new technique implies in exercising with the same dummy 
variables we used before because the number of observations is the same. The regression to 
estimate the parameter values of the components of Y2 also followed those to calculate Y1 cyclical 
component. Therefore, the basic regression repeats those of the first model with the applications to 
Y2, that is: 

Y2t = β0DC1t + β1D1t + β2Y2t –1 + ERt 
 Y2t = β0DC1t + β1D1t + β2Y2t –1 + β3D2t + β4DC2t + ERt 
  ·                                                       · 
  ·                                                       ·       (5) 
  ·                                                       · 

Y2t = β0DC1t + β1D1t + β2Y2t –1 +β3D99t  + β4DC99t  + ERt 
Y2t = β0DC1t + β1D1t + β2Y2t –1 +β3D100t+ β4DC100t + ERt 
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 In accordance with our new technique, all the procedures applied in Model I was used in 
Model II to reach the estimates of the parameters βj, j=0,1,2,3,4. 
 One different result in Model II was the estimate of β2. As one should expect, none of the 
regressions had significant estimate for this parameter. Despite of this, the main result about the 
estimation of the cyclical component holds. We can isolate the cyclical component by calculating 
the mean of the residuals of each regression applied to each observation at the overall period. Then, 
estimating the standard deviations of these means gives a path of residuals containing both cycle 
and irregular terms. In addition, the most approximated estimation of the true cyclical component of 
the variable Y2 resulted from the following formula: 
 
 CL2t = (MRES2t + STDRES2t) * (-1)       (6) 
 
Where MRES represents the mean of the residual of the regressions of each observation containing 
the dummies, accounting for changes in trends, and STDRES is its estimated standard deviation. 
Figure 2 shows the resulting cycles to this model. It is worth mentioning that the estimations of this 
model are not as accurate as those of model I.  Roughly, the smoothing technique seems still giving 
a good approximation of the true cycle. We will come back to this matter later on. 
 Hence, the smoothing technique using dummies to account for possible changes in trend in 
each period combined with the technique to extract the error term of the variable to estimate the 
cyclical component constitute a new methodology of analyzing business cycle. 
 
3.1.3. Model III 
 In this model, we constructed a variable with a unique and permanent break in the stochastic 
trend. The objective was to test our methodology robustness in estimating the cyclical component of 
the variable, isolating its trend throughout with its smoothing. The procedure to achieve the 
estimated cycle was the same as before but the variable (Y3) differs substantially. 
 

Y3t = DT3t+ ST3t+ CL3t+ ERt, 
DT3t = 1+0.5*TREND, 
ST3t = 1+(0.5*TREND), for t=1,2,…,50,      (7) 
ST3t = 0.5*TREND, for t=51,…,100, 
CL3t = -0.25*ERt, 
ER ~ N (0, 0.52). 

 
In this specification, we have that the trend of the variable Y3, T3t, turns out to be the following: 

 
T3t = 2+2*(0.5*TREND), for t=1,2,…,50, 

 T3t = 1+2*(0.5*TREND), for t=51,…,100.      (8) 
 
 In line with this framework, we applied our calculations of the regression analysis to 
generate the residuals of each observation and to form one series with the estimated mean and 
another one of its standard deviations. In this model, the resulting cyclical element was also 
compatible with the formula used for models I and II. This is displayed in the sequence. 
 
 CL3t = (MRES3t + STDRES3t)*(-1)       (9) 
 
 The graphical representation of the estimated cycle for this model is in Figure 3. Yet, 
finding out the right specification to the cyclical component of the series implies that new 
simulations must be conducted. Thus, Model IV brings new insights into the research. 
 
 
 



 7

3.1.4. Model IV 
 The variable generated in this model, called Y4, consists in a different feature than that of 
Y3. This is because the cyclical component of Y4 is not multiplied by a negative constant. Instead, 
Y4 has the following characteristics: 
 

Y4t = DT4t+ ST4t+ CL4t+ ERt, 
DT4t = 1+0.5*TREND, 
ST4t = 1+(0.5*TREND), for t=1,2,…,50,      (10) 
ST4t = 0.5*TREND, for t=51,…,100, 
CL4t = 0.25*ERt, 
ER ~ N (0, 0.52). 

 
 In this estimation of the cyclical component of series Y4, the results indicate that the right 
formula to reach the true value of the cycle is different from the one used for models I, II, and III. 
Partially, the results of this fourth model do not confirm those findings of models I to III. In 
contrast, the best solution we got follows the formula bellow, using the mean and the standard 
deviations of the residuals of the regressions applied. 
 
 CL4t = (MRES4t + STDRES4t)       (11) 
 
Plots of the resulting estimated cycle of Model IV is in Figure 4. 
 The matter now is to discover when the solution to determine the cyclical component should 
use CL2t or CL4t formulas. Finding out the answer to this problem exhorts the exploration of the 
elements of this new methodology, such as: the behavior of the models’ variances. 
 Beginning with this analysis, we compared two elements with the mean cycle (same as 
MRES), namely: the variance of the residuals of the regressions, and their standard deviations. The 
objective here is to find a condition or hint in the estimated parameters to guide us in choosing the 
equation that could calculate the true cycle of the variable. Thus, we tried to find some pattern in 
the parameters that could signalize the direction we should take to select an equation to calculate 
the cycle. The results are as follows. 
 For all four models, the respective estimated error, featured by the variance component of 
the residuals of the smoothing regressions (the square of the standard deviations), match exactly the 
mean cycle. Then, the results suggest that the variance of the residuals of the estimated regressions 
may have a distribution with zero mean and very small deviations. Figures 5 to 8 graph this 
condition. Although this is a characteristic corroborating to the statistical features of the 
methodology, it does not give us any direction on what formula to specify the cycle one should rely 
on. 
 In contrast, when we compare the mean cycle with the standard deviation multiplied by two 
(STDEV*2) for the four models, we have that their mean cycle are always higher than their 
STDEV*2. Figures 9 to 12 shows these results. Again, we find no hint on the true cycle formula. 
Because the models did not show any difference among them that could justify a different formula 
of calculating the cycle. 
 
IV. Comparing HP Filter and DDME Methodologies 

This section contrasts the HP filter for smoothing series as a tool to find the cyclical 
component of the series with the technique we are proposing here.  

Considering the variable has two components, trend and cycle. Applying the HP filter to 
smooth the trend of Y1 implies a smoothed series called y1. This would give the value of Y 
computing with a smoothed trend. The difference between Y1 and y1 would give the residual 
component containing the cycle. Comparing the resulting HP cycle with the cycle generated by our 
Monte Carlo procedure requires creating a new variable with the remaining elements of the series 
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after smoothing for its trend, we shall call this remaining part of the series of CTEt, that is CLt plus 
ERt. 
 
4.1. Model I 

In accordance with the first model, the component CTEt is CTE1. This corresponds to our 
variable MRES, or the mean of the residuals of the regressions with smoothed trend. We shall refer 
to it as the mean cycle of the variable. 

According to Figure 17, one may observe that both estimations of the cycle for Model I 
(CTE1), HP-cycle1 and the mean-cycle1, are close to its value. However, testing their robustness in 
performing CTE1 requires other investigations through tests of mean, of median, and of variance. 

Considering the t-test and the ANOVA F-statistics, the tests of the mean show that both 
statistics accept the null hypothesis that both series (mean-cycle1 and CTE1) has the same mean, 
the tests respective p-values are 81%. Then, the mean-cycle1 and CTE1 has the same mean. 
According to the mean test, HP-cycle1 also has the same mean as CTE1, with p-value of 
approximately 92%. 

The tests for equality of medians between series show that the probability of mean-cycle1 
belonging to the same distribution as CTE1 goes from 100% to 77%. Through the Wilcoxon/Mann-
Whitney method, the test has the null hypothesis that the two series are independent samples from 
same general distribution. In this case, its probability is about 83%. The median Chi-square test is 
based on the rank of the observations of each series with an ANOVA test based on the comparison 
of the numbers of observations above and below the median of each series. In this test, the mean-
cycle1 proves to come from the same distribution as CTE1 by the probability of 100%. The HP-
cycle1 also passed in the test of medians. Its probability of belonging to the same distribution as the 
CTE1 series goes from 56% to 94%.   

In accordance with the tests for equality of variances between series, the results indicate that 
the probability of equality ranges from 72 to 87% between mean-cycle1 and CTE1. The F-test here 
take the series with larger variance (L) and divides it by the series with the lowest variance, such 
that F=( 2

Ls / 2
Ss )=(0.01917/0.01853)=1.0345. The Bartlett test compares the logarithm of the 

weighted average variance with the weighted sum of the logarithms of the variances (EViews, p. 
163). For this test, the adjusted statistic reported for series mean-cycle1 is 0.026 with probability of 
87%. The Levene test performs an analysis of variance (ANOVA) of the absolute difference from 
the mean (EViews, p.163). This test indicates that the probability of the variances of the series 
mean-cycle 1 and CTE1 be equal is 78%. 

For the case of the series HP-cycle1, the residual cycle of the HP-Filter, the probability for 
equal variance between this series and CTE1 ranges from 25 to 47%, much lower than the series 
mean-cycle1. Both F-test and Bartlett test for HP-cycle1 have probability of approximately 47%.  

In addition to these results, we can show that the estimations for the cycle using the 
methodology DDME, to account for mean-cycle1, are better than the estimations with HP-Filter, for 
HP-cycle1, in Model I as follows. Since 

VAR(CTE1) = (0.138452)2, 
VAR(DDME1) = (0.136123)2, and       (12) 
VAR(HP1) = (0.128497)2. 

Then, we can compute how close the measurement of the cycle (mean-cycle1 or HP-cycle1) is to 
the cycle (CTE1=CL1t+ERt), resulting from Monte Carlo experiment. Therefore, 

 %86%97
138452.0
128497.0

138452.0
136123.0 22

>⇒





>






 .     (13) 

 Thus, the mean-cycle1 resulting from DDME method mimic the true cycle closer than the 
HP-cycle1, showing to be 11% better. 
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4.2. Model II 
 In spite of the results reported here, the estimations of Model II showed to be similar to 
those of Model I. Comparing the components of Figure 18, it suggests that mean-cycle2 is closer to 
CTE2 that HP-cycle2. The tests for equality of mean imply that the probability of mean-cycle2 and 
CTE2 have same mean is 92%. Moreover, this probability for HP-cycle2 series is approximately the 
same. 
 In Model II, the probability of mean-cycle2 has the same general distribution as CTE2, yet 
different samples, goes from 88% to 100%. The highest resulting p-value comes from Median Chi-
square statistics. Again, the HP-cycle2 passes the test of same median as CTE2, showing p-values 
from 77 to 92%. However, these p-values are still lower than those found to the series mean-cycle2. 
 The tests for equality of variance show lower probabilities than those of Model I. Although 
the results for the series mean-cycle2 are significantly higher than the ones calculated for series HP-
cycle2. In Model II, the probability of mean-cycle2 has the same variance as CTE2 ranges from 36 
to 49%. If one considers the series HP-cycle2, its probability to have same variance as CTE2 ranges 
from 8% to 11%. This last result suggests the rejection of the null hypothesis of same variance of 
HP-cycle2 as CTE2. 
 Despite of this result, considering the variances of CTE2, of mean-cycle2 calculated through 
the residuals of the DDME smoothing procedure, and HP-cycle2 resulted from the application of 
the HP-Filter on the Y2t.  

VAR(CTE2) = (0.207678)2, 
VAR(DDME2) = (0.188464)2, and       (14) 
VAR(HP2) = (0.176366)2. 

Therefore, we show the following comparison of variances: 

 %72%82
0.207678

176366.0
0.207678

188464.0 22

>⇒





>






 .     (15) 

 The result of the comparison of the variances indicates that the mean-cycle2 is 10% closer to 
the movements of CTE2 than is HP-cycle2. 
 
4.3. Model III 
 Turning the attention to the third model, not all the results hold. Getting inspection on 
Figure 19 suggests that the resulting HP-cycle3 is closer to the true cycle CTE3 than is mean-
cycle3, especially to the period after the break in the series Y3t, exactly in the 50th observation. 
Nonetheless, we proceed with the study of the methods HP-Filter and DDME smoothing. 
 Comparing the tests for equality of means, the p-value for equality between series CTE3 and 
mean-cycle3’s means is approximately 97%. For the case of HP-cycle3 we have the probability of 
93% of being equal to CTE3, which is highly acceptable. 
 Moreover, the tests for equality of medians of two series indicate that the probability of 
mean-cycle3 has the same distribution as CTE3 ranges from 77 to 88%, but independent samples. 
The best p-value is given by Adjusted Median Chi-square statistic, which is a continuity corrected 
statistic. The p-values for the series HP-cycle3 goes from 77 to 91%, it achieves a highest 
probability of belonging to the same general distribution as CTE3. 
 In addition, the tests of variances indicate that the probability of mean-cycle3 has the same 
variance as CTE3 can reach 70%, but it is 1.6% to the F-test. This may be happening because of the 
break in series Y3t. Yet it has puzzled us since we expect the DDME method be a good smoother 
when the series has a break. Maybe we could have better estimates if we improve the econometric 
methodology to regress the variable against its trend from OLS to a more sophisticated one. The 
HP-cycle3 reaches higher probability of having same variance as CTE3, 90%, however it also gives 
a low p-value to the F-test, 27%. 
 In this context, the comparison of amplitude of the cycles computed by DDME and HP 
methodologies are the following: 

VAR(CTE3) = (0.207678)2, 
VAR(DDME3) = (0.268027)2, and       (16) 
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VAR(HP3) = (0.232822)2. 
Then, these variances imply that: 

 %126%166
0.207678

232822.0
0.207678

268027.0 22

>⇒





>






 .     (17) 

This means that DDME is overshooting the variance of the cycle by 66%, then the estimated series 
mean-cycle3 has a relatively higher amplitude than CTE3. The HP methodology also overestimates 
the real cycle, but in a smaller amount, 26%. 
 
4.4. Model IV  
 The last model to analyze is Model IV. Recall that this model also has a break in its trend as 
Model III but its cycle component is equal to 0.25ERt, and not equal to its negative, -0.25ERt, as in 
Model III. 
 According to Figure 20, comparing results for plotted cycles, it is possible to notice that 
mean-cycle4 and HP-cycle4 have similar performance to mimic CTE4 until it reaches observation 
50, where we simulated the break in the series. After that, it seems HP-cycle4 gets closer to CTE4. 
Let us investigate the statistical results. 
 The estimates for the equality of means are close to both methods but DDME is still better 
off in this test. Then, the probability of mean-cycle4 to have the same mean as the CTE4 series is 
approximately 94%, while this p-value for HP-cyle4 is about 92%. 
 When analyzing the results for the test of equality of medians between series, the estimates 
show that the probability of mean-cycle4 belongs to the same general distribution as CTE4 ranges 
from 85 to 100%. In this test, the HP-cycle4 goes from 77 to 96% of having same distribution as 
CTE4. 
 In the analysis of the variances and their possible equalities, the results show that the 
probability of mean-cycle4 series have the same variance as CTE4 ranges from 25 to 95%. HP-
cycle4’s p-values also go from 27 to 98%, but in different test-statistics. The F-test of mean-cycle4 
has p-value of 25% and of HP-cycle4 of 98%. The Siegel-Tukey test indicates a p-value of 95% for 
mean-cycle4’s variance and of 27% for HP-cycle4’s variance. This Siegel-Tukey test assumes that 
the series have equal median but are independent from each other, which is the case in both pair of 
series, mean-cycle4 and HP-cycle4 in relation to CTE4. The Siegel-Tukey test ranks the series from 
smallest to largest value. It assigns rank 1 to lowest value, rank 2 to highest value, the rank 3 to the 
second highest value, and rank 4 to the second lowest value, rank 5 to the third lowest value, and so 
on. In other words, the ranking for the Siegel-Tukey tests alternates from the lowest to the highest 
value for every other rank (Eviews, p.163). As in Kruskal-Wallis test, the idea is to compare the 
sum of the ranks from each pair of subgroups (1, 2, …, n). If the groups have the same variances, 
the values of the summations of the respective ranks should be similar.  
 Furthermore, we proceed with the comparison of amplitude of the cycles as follows.  

VAR(CTE4) = (0.346131)2, 
VAR(DDME4) = (0.390962)2, and       (18) 
VAR(HP4) = (0.346965)2. 

Using these resulting to account for the amplitude of each estimate of CTE4, we have: 

 %100%133
0.346131

346965.0
0.346131

390962.0 22

>⇒





>






 .     (19) 

 Thus, in this model HP-cycle shows to be highly superior in relation to the cycle created by 
DDME, in the sense that it mimics closely the amplitude of the CTE4. However, we may show that 
the true cycle requires one step forward to be estimated. Before that, it is worth to compare one 
more result about the significance of each estimator of the cycle in the models. Table 1 displays the 
resulting explanation coefficients for each model. 
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Table 1 

OLS Regressions on CTE and their respective statistics 
Dependent 
Variable 

Variable Coefficient Std. Error t-Statistic Probability R2 

CTE1 Mean-cycle1 1.0 0.009 114.84 0.000 0.99 
 HP-cycle1 1.0 0.022 46.89 0.000 0.96 

CTE2 Mean-cycle2 1.1 0.012 91.93 0.000 0.99 
 HP-cycle2 1.1 0.023 48.16 0.000 0.96 

CTE3 Mean-cycle3 0.62 0.049 12.50 0.000 0.63 
 HP-cycle3 0.70 0.053 13.17 0.000 0.66 

CTE4 Mean-cycle4 0.77 0.045 17.25 0.000 0.77 
 HP-cycle4 0.88 0.043 20.58 0.000 0.82 

 
 In accordance with Table 1, for models I and II, the cycle generated through MMDE 
procedure produced higher R-squared than those from the application of HP filter. In addition, 
models III and IV the R-squared of HP-cycles were higher than those R2 resulting from the 
application of MMDE method. 
 
V. The True Cycle Estimation 
 Recall that the CTE is the sum of the cycle (CLit) and the irregular term (ERt). In this 
section, we proceed with the comparison of the true cycle (CLit) generated by the Monte Carlo 
experiment and the ones resulting from the use of HP-Filter and the DDME method of smoothing. 
 One intriguing result was the estimation of the cyclical component of Model I using the 
Hodrick-Prescott filter. Notice that HP trend smoothing does not separate the irregular term of the 
variable from its cyclical term. Thus, the estimated cycle using HP filter technique showed to be the 
opposite of the true value of the cyclical component created by the Monte Carlo experiment.  

Additionally, when we applied the HP filter to estimate the cyclical components to models II 
and III, we confirmed the same opposite direction of the sign of the true cycle as we found in Model 
I. Therefore through the HP filtering it was unable to determine the true cyclical components of Y2 
and Y3. We expected this to be the case because the HP filter considers that the irregular component 
of the series is smooth or insignificant. Especially for the case of the second model, the stochastic 
trend was relatively complex, making it difficult to determine the true cycle. Figures 13 through 16 
display these findings. 
 
 
VI. An Application to Brazilian GDP 
 In line with the recursive procedure presented here, we applied this new technique to the 
Brazilian product (Gross Domestic Product-PIB) to the period of 1980:I to 1999:III. The data comes 
from IPEA (Instituto de Pesquisa Econômica Aplicada). The objective was to compare the resulting 
cyclical component of DDME technique with HP-Filter. Both calculations are represented in Graph 
1. 
 Since we cannot specify the stochastic component of real Brazilian product, we estimated 
the mean-cycle for Brazilian GDP throughout our recursive technique and called it Mean-Cycle PIB 
to compare with the resulting cycle form HP filtering. 
 In accordance with Graph 1, the Mean-Cycle PIB mimics the HP-Cycle, they apparently 
follow the same path. However, it seems that the variations of the Mean-Cycle PIB are lower for the 
most part of the data. Its standard deviation series is shown in the smooth line close to the 
horizontal axes.  
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Graph 1 

Comparing Estimated Cycle with HP-Filter Cycle
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VIII. Appendix A 
 The mathematical formulations of the general model can be represented as follows. 
 yt = θt + f(t) + δyt-1 + ∑ =

=

tn

i 2
yi-1  

Where yt is a time series, θt is the parameter representing the intercept of the variable, and t is the 
trend of the variable. In accordance with this framework, θt follows the form bellow. 
 θt = α0 + α1DC1 
DC1 can take more than one form, such as: 

1) If DC1 = 0, then θ1t = α0 
2) If DC1 = 1, then θ2t = α0 + α1. 

Figure A.I displays these possibilities. 
Figure A.I 

t

θ1    α1=0

θ2   α1>0

θ

 
 
DC1 = 0 for t < t i and DC1 = 1 for t ≥ t i, where i=1, …, n- t . Understanding this presentation gets 
easy in the light of an example. 

Example A.I: t > t i and i=3 
Obs. = t DC1 α0 

1 0 1 
2 0 1 
3 0 1 
4 1 1 
5 1 1 
: : : 
n 1 1 

 
 The function of time [f (t)] is the following: 
 f (t) = β0 + β1t + β2D1 t . 
Where D1 is a dummy variable to capture possible changes in t. Thus D1 can assume different 
forms, such that: 



 14

1) If D1 = 0 and β0 = 0, then f1(t) = β1t, 
2) If D1 = 0 and β0 ≠ 0, then f2(t) = β0 + β1t, 
3) If D1 = 1 and β0 ≠ 0, then f3(t) = β0 +(β1t + β2 t ), 
4) If D1 = 1 and β0 = 0, then f4(t) = (β1 + β2) t. 

 
These cases are drawn in Figure A.II. 

 
Figure A.II 

t

f (t) f3 (t) for 

f2 (t)

f3 (t) for
f4 (t) for

f1 (t)

f4 (t) for

  β2 > 0

  β2 < 0
  β2 > 0

  β2 < 0

 
 
The qualitative variable D1 = 0 for t < t i, t = 1, 2, …, n. And D1 = 1 for t ≥ t i, where i=1, …, n- t . 
Considering one example in which t ≥ t i  and i=3, and another one with t ≥ t i  and i=2.  

 
 

Example A.II: t ≥ t i and i=3 
Obs. = t D1 t i 

1 0 0 
2 0 0 
3 1 1 
4 1 2 
5 1 3 
: : : 
N 1 n- t =n-3 

 
 

Example A.III: t ≥ t i and i=2 
  
 
 
 
 
 
 
 
 
 

Combining all the possibilities considered here for θ and f (t) forms a model to capture 
different features of intercept changes and stochastic trend of a series. In what follows we exhibit 
the resulting model we are interested into. 
  
 

Obs. = t D1 t i 
1 0 0 
2 1 1 
3 1 2 
4 1 3 
5 1 4 
: : : 
n 1 n-1 
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Considering the variable yt. 
  yt = θt + f(t) + δyt-1 + ∑ =

=

tn

i 2
yi-1  

Examples: 
Case I 
DC=0, β0 and D=0, then yt = α0 + β1t; 
Case II 
DC=1, β0 and D=0, then yt = α0 + α1 + β1t; 
Case III 
DC=0, β0 ≠ 0, and D=0, then yt = (α0 + β0) + β1t; 
Case IV 
DC=0, β0 ≠ 0, and D=1, then yt = (α0 + β0) + β1t + β2 t ; 
Case V 
DC=1, β0 ≠ 0, and D=1, then yt = (α0 + α1 + β0) + β1t + β2 t ; 
Case VI 
DC=1, β0 = 0, and D=1, then yt = (α0 + α1) + β1t + β2 t ; 
Case VII 
DC=0, β0 = 0, and D=1, then yt = β1t + β2 t ; 
Case VIII 
DC=0, β0 = 0, and D=0, then yt = β1t; 
Case IX 
DC=0, β0 = 0, β1 = 0, and D=0, then yt = α0. 
  

Notice that at t , we could have: 
1) θ2, (α1>0), and f1(t); 
2) θ2, (α1< α < α1’), and f4(t) with (β2 < 0); 
3) θ2, (α1< α < α1”), and f4(t) with (β2 > 0). 

 
Figure A.IV illustrates some of the possible cases described here. Each point ( t i) is estimated in 
order to obtain the best fit for yt. The ŷt and the residuals are then saved. At the end of running all 
regressions, what you have is an array of estimated ŷt and residuals forming a matrix. The mean of 
the first line, with the estimated residuals from the regressions performed for that observation, 
represents the estimated cycle together with its error term.  

 
Figure A.III 

 

t

θ1,    α1=0

θ2,   α1>0

θ

3
1
2

f4 (t) for 

f1 (t)

f4 (t) for 

β2 > 0

β2 < 0

α1

α1

'

"

 
    t i=3 
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Figure 1 
ESTIMATED CYCLE AND CYCLE I - M ODEL I
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Figure 2 
 

ES T IM AT ED  C Y CL E  AN D  C Y C LE  - M O D EL  II
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Figure 3 
E S T IM A T E D  C Y C L E  A N D  C Y C LE  -  M O D E L  I I I
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Figure 4 
ESTIMATED CYCLE AND CYCLE - MODEL IV
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Figure 5 
C O N D ITIO N  TO  D E F IN E  C YC LE 1  W ITH  V AR  -  M O D E L  I
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Figure 6 
CONDITION TO DEFINE CYCLE2 WITH VAR - MODELO II
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Figure 7 
C O N D IT IO N  T O  D E F IN E  C Y C L E 3  W IT H  V AR  - M O D E L O  III
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Figure 8 
CONDITION TO DEFINE CYCLE4 W ITH VAR - M ODEL IV
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Figure 9 
CO NDIT IO N TO F IND  CYCLE W ITH SD *2  - MO DEL I
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Figure 10 
CONDITION TO DEFINE CYCLE2 WITH SD*2 - MODEL II
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Figure 11 
CO N DITIO N  TO  D EFINE  C YC LE 3  W ITH SD *2 - M O DE L II I

-1.5000

-1.0000

-0.5000

0.0000

0.5000

1.0000

1.5000

2.0000

1 4 7 1
0

13 1
6

1
9

2
2

2
5

28 3
1

34 3
7

4
0

4
3

4
6

4
9

5
2

5
5

5
8

61 6
4

67 7
0

7
3

7
6

7
9

8
2

8
5

8
8

9
1

O B SER VA TIO N S

V
A

L
U

E

ESTERR 31
M EAN

 
 

Figure 12 
CONDITION TO DEFINE CYCLE4 WITH SD*2 - MODELO IV
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Figure 13 
COMPARING CYCLES - MODEL I
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Figure 14 
COMPARING CYCLES - MODEL II
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Figure 15 
COMPARING CYCLES - MODEL III
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Figure 16 
C O M P AR IN G  C Y C L E S  - M O D E L IV
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Figure 17 
C O M P AR IN G  R E S ID U AL  C Y C L E  - M O D E L  I
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Figure 18 
COMPARING RESIDUAL CYCLE - MODEL II
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Figure 19 
COMPARING RESIDUAL CYCLE - MO DEL III
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Figure 20 

COMPARING RESIDUAL CYCLE - MODEL IV
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